本文主要分享基于python的数据分析三方库pandas,numpy的一次爬坑经历,发现并分析了python语言对于浮点数精度处理不准确的问题,并在最后给出合理的解决方案。如果你也在用python处理数据,建议看一下,毕竟0.1的误差都可能造成比较大的影响。
问题出现
早上到了公司,领导发了几个文件过来,说这两天测试环境跑出来的数据,与实际情况有所出入,看看哪出的问题,尽快解决···
开始排查
先对比数据,发现并不是所有的数据都出现问题,只有10%左右的数据有这个问题,说明应该不是逻辑上的问题,初步判断可能为个别情况需要特殊处理,考虑不周导致
检查梳理各个运算模块,用debug断点调试一波,确定了数据出现偏差的模块
通过单独测试这个单元模块最终确定,涉及到两数相除结果为0.5(浮点数)的地方有问题
预期结果:np.round(0.5)=1,实际运算结果:np.round(0.5)=0,于是我做了如下的试验
# 基于python3.7版本 > import numpy as np # 先看看 0 < x < 1 这个范围的结果,发现有问题 > np.round(0.50) 0.0 > np.round(0.51) 1.0 > np.round(0.49) 0.0 # 我担心是不是只有小数点为.5的都会呈现这种问题,所以测试了 x > 1的结果,发现还是有问题 > np.round(1.5) 2.0 > np.round(2.5) 2.0 > np.round(3.5) 4.0 > np.round(4.5) 4.0
通过对比,发现确实涉及到.5的值会有些和预想的不同,看看啥原因
分析问题
确实发现了关于浮点数(.5出现了理解上的偏差),看看官方文档怎么解释这个现象
numpy.around(a, decimals=0, out=None)[source]
Evenly round to the given number of decimals.
# 对于恰好介于四舍五入的十进制值之间的中间值(.5),NumPy会四舍五入为最接近的偶数值。
# 因此1.5和2.5四舍五入为2.0,-0.5和0.5四舍五入为0.0,依此类推。
For values exactly halfway between rounded decimal values,
NumPy rounds to the nearest even value.
Thus 1.5 and 2.5 round to 2.0, -0.5 and 0.5 round to 0.0, etc.
# np.around使用快速但有时不精确的算法来舍入浮点数据类型。
# 对于正小数,它等效于np.true_divide(np.rint(a * 10 **小数),10 **小数),
# 由于IEEE浮点标准[1]和 十次方缩放时引入的错误
np.around uses a fast but sometimes inexact algorithm to round floating-point datatypes.
For positive decimals it is equivalent to np.true_divide(np.rint(a * 10**decimals), 10**decimals),
which has error due to the inexact representation of decimal fractions in the IEEE floating point standard [1]
and errors introduced when scaling by powers of ten
- 其实也就是说:对于带有.5这种刚好介于中间的值,返回的是相邻的偶数值
- 白话解释:如果一个数字带有浮点数(.5),整数部分为偶数,则返回这个偶数;整数部分奇数,则返回这个奇数+1的偶数
- 规律解释:如果整数部分能够整除2,则返回整数部分;如果整数部分不能整除2,则返回整数部分 +1
解决问题
先不做任何改动,看下数据误差的情形
# 我们为了先看下现象,构造如下案例 import pandas as pd import numpy as np df = pd.DataFrame({"num1": [1, 1, 1.5, 5, 7.5], "num2": [2, 3, 1, 6, 3]}) df["真实值"] = df["num1"] / df["num2"] # 看下round函数过后的结果 df["偏差值"] = np.round(df["num1"] / df["num2"])
原始结果图片如下
不做处理,期望值和偏差值不等的情况出现
我的解决方案
- 我根据我的精度要求,构建精度范围所需要保留的小数点的最后一位,通过这个数字是否为5,判断是否需要向上取整
- 举例来说,本案例中我只需要保留整数部分的数据,那么我只需要确定小数点后第一位是否是数字5就可以了
上代码
import pandas as pd import numpy as np import math df = pd.DataFrame({"除数": [1, 1, 1.5, 5, 7.5], "被除数": [2, 3, 1, 6, 3]}) # 记录真实值 df["真实值"] = df["除数"] / df["被除数"] # 记录整数部分 df["辅助整数列"] = df["真实值"].apply(lambda x: math.modf(x)[1]) # 记录小数部分,因为我的最后结果精度为只保留整数部分,所以我只需要保留一个小数点位进行判断是否需要进位操作 df["辅助小数列"] = df["真实值"].apply(lambda x: str(math.modf(x)[0]).split(".")[1][0]) # 小数点后的第一位是为5,则向上取整,不是5则调用原np.round就行了 df["期望值修正"] = df.apply(lambda x: x.辅助整数列 + 1 if (x.辅助小数列 == "5") else np.round(x.真实值), axis=1)
结果如下所示
以上就是python 四舍五入需要注意的地方的详细内容,更多关于python 四舍五入的资料请关注其它相关文章!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]