将数据存储在不同的数据结构中时,搜索是非常基本的必需条件。最简单的方法是遍历数据结构中的每个元素,并将其与您正在搜索的值进行匹配。这就是所谓的线性搜索。它效率低下,很少使用,但为它创建一个程序给出了我们如何实现一些高级搜索算法的想法。

线性搜索

在这种类型的搜索中,逐个搜索所有值。每个值都会被检查,如果找到匹配项,那么返回该特定值,否则搜索将继续到数据结构的末尾。代码如下:

[Python] 纯文本查看

def linear_search(data, search_for):
 """线性搜索"""
 search_at = 0
 search_res = False
 while search_at < len(data) and search_res is False:
  if data[search_at] == search_for:
   search_res = True
  else:
   search_at += 1
 return search_res
lis = [5, 10, 7, 35, 12, 26, 41]
print(linear_search(lis, 12))
print(linear_search(lis, 6))

插值搜索

该搜索算法适用于所需值的探测位置。为了使该算法正常工作,数据收集应该以排序形式并平均分布。最初,探针位置是集合中最大项目的位置。如果匹配发生,则返回项目的索引。如果中间项目大于项目,则再次在中间项目右侧的子数组中计算探针位置。否则,该项目将在中间项目左侧的子数组中搜索。这个过程在子数组上继续,直到子数组的大小减小到零。代码如下:

[Python] 纯文本查看 

def insert_search(data,x):
 """插值搜索"""
 idx0 = 0
 idxn = (len(data) - 1)
 while idx0 <= idxn and x >= data[idx0] and x <= data[idxn]:
  mid = idx0 +int(((float(idxn - idx0)/(data[idxn] - data[idx0])) * (x - data[idx0])))
  if data[mid] == x:
   return "在下标为"+str(mid) + "的位置找到了" + str(x)
  if data[mid] < x:
   idx0 = mid + 1
 return "没有搜索到" + str(x)
 
 
lis = [2, 6, 11, 19, 27, 31, 45, 121]
print(insert_search(lis, 31))
print(insert_search(lis, 3))

总结

以上所述是小编给大家介绍的Python实现搜索算法的实例代码,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!