我就废话不多说了,直接上代码吧!
import math import numpy as np import matplotlib.pyplot as plt from sympy import * #用于求导积分等科学计算 def dif(left,right,step):#求导 左右区间以及间隔 x,y = symbols('x y')#引入x y变量 expr = pow(x,5)#计算表达式 x_value = [] #save x value y_value = [] #save x f(x) value y_value_dif = [] #save x f(x)_dot value y_value_dif2 = [] #save x f(x)_dot2 value y_value_dif3 = [] #save x f(x)_dot3 value y_value_dif4 = [] #save x f(x)_dot4 value #print(expand(exp(I*x), complex=True))#将复指数展开成实部虚部形式 expr_dif = diff(expr,x,1) expr_dif2 = diff(expr,x,2) expr_dif3 = diff(expr,x,3) expr_dif4 = diff(expr,x,4) for i in np.arange(left,right,step): x_value.append(i) y_value.append(expr.subs('x',i))#将i值代入表达式 y_value_dif.append(expr_dif.subs('x',i))#将i值代入求导表达式 y_value_dif2.append(expr_dif2.subs('x',i))#将i值代入2阶求导表达式 y_value_dif3.append(expr_dif3.subs('x',i))#将i值代入3阶求导表达式 y_value_dif4.append(expr_dif4.subs('x',i))#将i值代入4阶求导表达式 draw_plot_set()#设置画图格式 plt.plot(x_value,y_value,"b-",linewidth=1,label='f(x)='+str(expr)) #画图 plt.plot(x_value,y_value_dif,"r-",linewidth=1,label='f(x)_prim') #画图 plt.plot(x_value,y_value_dif2,"y-",linewidth=1,label='f(x)_prim2') #画图 plt.plot(x_value,y_value_dif3,"g-",linewidth=1,label='f(x)_prim3') #画图 plt.plot(x_value,y_value_dif4,"b-",linewidth=1,label='f(x)_prim4') #画图 plt.legend()#显示图例 plt.show()#显示图像 def draw_plot_set():#设置画图格式 plt.figure() ax = plt.gca() #改变坐标轴位置 ax.spines['right'].set_color('none')#删除原来轴 ax.spines['top'].set_color('none')#删除原来轴 ax.xaxis.set_ticks_position('bottom')#在0点处增加轴 ax.spines['bottom'].set_position(('data',0)) ax.yaxis.set_ticks_position('left')#在0点处增加轴 ax.spines['left'].set_position(('data',0)) #设置坐标名 plt.ylabel('f(x)') plt.xlabel('x') plt.grid(True)#打开网格 if __name__ == '__main__': dif(-5,5,0.01)
补充拓展:python利用sympy库对某个函数求导,numpy库使用该求导结果计算的程序
在python数据处理过程中,我们经常会遇见这样一种情况。需要对一个函数表达式求偏导,并将具体数值代入导数式。
而python中通常可用于函数求导的函数是sympy库中的diff()函数。
但他通常所求得的导数只是一个符号表达式。不能直接带入数据使用。
如下例:
import sympy as sp import numpy as np x,y = sp.symbols('x y') z = sp.sin(2*sp.pi*x+2*y/5) zx = sp.diff(z,x) zy = sp.diff(z,y) print(zx) print(zy)
其输出为:
2*pi*cos(2*pi*x + 2*y/5) 2*cos(2*pi*x + 2*y/5)/5
那么该如何解决这个问题呢?
对x,y使用evalf()函数分别赋值后,用float进行类型转换后,才能利用numpy进行数值计算。
如下例:
import sympy as sp import numpy as np x,y = sp.symbols('x y') z = sp.sin(2*sp.pi*x+2*y/5) zx = sp.diff(z,x) zy = sp.diff(z,y) x1 = 10 y1 = 5 z_x1 = float(zx.evalf(subs={x:x1,y:y1})) z_y1 = float(zy.evalf(subs={x:x1,y:y1})) print(z_x1) print(z_y1)
其输出结果:
-2.61472768902227 -0.16645873461885696
那如果我的x或y不是单一的值呢?而是一个数组。
我们可以利用一个循环来完成。
如下例:
import sympy as sp import numpy as np x,y = sp.symbols('x y') z = sp.sin(2*sp.pi*x+2*y/5) zx = sp.diff(z,x) zy = sp.diff(z,y) x_array = np.linspace(-5, 5, 10) y_array = np.linspace(-5, 5, 10) temp_x = []#先定义一个用于存储x偏导的空列表 temp_y = []#先定义一个用于存储y偏导的空列表 for i in range(10): z_x = float(zx.evalf(subs={x:x_array[i],y:y_array[i]})) temp_x.append(z_x)#将计算得到的偏导值一一添加到列表中 z_y = float(zy.evalf(subs={x:x_array[i],y:y_array[i]})) temp_y.append(z_y) zx_array = np.array(temp_x)#将列表转换为数组 zy_array = np.array(temp_y) print(zx_array) print(zy_array)
输出结果为:
[-2.61472769 4.11163864 6.02946289 0.89585862 -5.2854481 -5.2854481 0.89585862 6.02946289 4.11163864 -2.61472769] [-0.16645873 0.26175505 0.38384753 0.05703213 -0.33648208 -0.33648208 0.05703213 0.38384753 0.26175505 -0.16645873]
由此便实现了由sympy得到求导结果,到numpy库进行数值计算。
以上这篇python计算导数并绘图的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]