正常来说backward( )函数是要传入参数的,一直没弄明白backward需要传入的参数具体含义,但是没关系,生命在与折腾,咱们来折腾一下,嘿嘿。
对标量自动求导
首先,如果out.backward()中的out是一个标量的话(相当于一个神经网络有一个样本,这个样本有两个属性,神经网络有一个输出)那么此时我的backward函数是不需要输入任何参数的。
import torch from torch.autograd import Variable a = Variable(torch.Tensor([2,3]),requires_grad=True) b = a + 3 c = b * 3 out = c.mean() out.backward() print('input:') print(a.data) print('output:') print(out.data.item()) print('input gradients are:') print(a.grad)
运行结果:
不难看出,我们构建了这样的一个函数:
所以其求导也很容易看出:
这是对其进行标量自动求导的结果.
对向量自动求导
如果out.backward()中的out是一个向量(或者理解成1xN的矩阵)的话,我们对向量进行自动求导,看看会发生什么?
先构建这样的一个模型(相当于一个神经网络有一个样本,这个样本有两个属性,神经网络有两个输出):
import torch from torch.autograd import Variable a = Variable(torch.Tensor([[2.,4.]]),requires_grad=True) b = torch.zeros(1,2) b[0,0] = a[0,0] ** 2 b[0,1] = a[0,1] ** 3 out = 2 * b #其参数要传入和out维度一样的矩阵 out.backward(torch.FloatTensor([[1.,1.]])) print('input:') print(a.data) print('output:') print(out.data) print('input gradients are:') print(a.grad)
模型也很简单,不难看出out求导出来的雅克比应该是:
因为a1 = 2,a2 = 4,所以上面的矩阵应该是:
运行的结果:
嗯,的确是8和96,但是仔细想一想,和咱们想要的雅克比矩阵的形式也不一样啊。难道是backward自动把0给省略了?
咱们继续试试,这次在上一个模型的基础上进行小修改,如下:
import torch from torch.autograd import Variable a = Variable(torch.Tensor([[2.,4.]]),requires_grad=True) b = torch.zeros(1,2) b[0,0] = a[0,0] ** 2 + a[0,1] b[0,1] = a[0,1] ** 3 + a[0,0] out = 2 * b #其参数要传入和out维度一样的矩阵 out.backward(torch.FloatTensor([[1.,1.]])) print('input:') print(a.data) print('output:') print(out.data) print('input gradients are:') print(a.grad)
可以看出这个模型的雅克比应该是:
运行一下:
等等,什么鬼?正常来说不应该是
么?我是谁?我再哪?为什么就给我2个数,而且是 8 + 2 = 10 ,96 + 2 = 98 。难道都是加的 2 ?想一想,刚才咱们backward中传的参数是 [ [ 1 , 1 ] ],难道安装这个关系对应求和了?咱们换个参数来试一试,程序中只更改传入的参数为[ [ 1 , 2 ] ]:
import torch from torch.autograd import Variable a = Variable(torch.Tensor([[2.,4.]]),requires_grad=True) b = torch.zeros(1,2) b[0,0] = a[0,0] ** 2 + a[0,1] b[0,1] = a[0,1] ** 3 + a[0,0] out = 2 * b #其参数要传入和out维度一样的矩阵 out.backward(torch.FloatTensor([[1.,2.]])) print('input:') print(a.data) print('output:') print(out.data) print('input gradients are:') print(a.grad)
嗯,这回可以理解了,我们传入的参数,是对原来模型正常求导出来的雅克比矩阵进行线性操作,可以把我们传进的参数(设为arg)看成一个列向量,那么我们得到的结果就是:
在这个题目中,我们得到的实际是:
看起来一切完美的解释了,但是就在我刚刚打字的一刻,我意识到官方文档中说k.backward()传入的参数应该和k具有相同的维度,所以如果按上述去解释是解释不通的。哪里出问题了呢?
仔细看了一下,原来是这样的:在对雅克比矩阵进行线性操作的时候,应该把我们传进的参数(设为arg)看成一个行向量(不是列向量),那么我们得到的结果就是:
也就是:
这回我们就解释的通了。
现在我们来输出一下雅克比矩阵吧,为了不引起歧义,我们让雅克比矩阵的每个数值都不一样(一开始分析错了就是因为雅克比矩阵中有相同的数据),所以模型小改动如下:
import torch from torch.autograd import Variable a = Variable(torch.Tensor([[2.,4.]]),requires_grad=True) b = torch.zeros(1,2) b[0,0] = a[0,0] ** 2 + a[0,1] b[0,1] = a[0,1] ** 3 + a[0,0] * 2 out = 2 * b #其参数要传入和out维度一样的矩阵 out.backward(torch.FloatTensor([[1,0]]),retain_graph=True) A_temp = copy.deepcopy(a.grad) a.grad.zero_() out.backward(torch.FloatTensor([[0,1]])) B_temp = a.grad print('jacobian matrix is:') print(torch.cat( (A_temp,B_temp),0 ))
如果没问题的话咱们的雅克比矩阵应该是 [ [ 8 , 2 ] , [ 4 , 96 ] ]
好了,下面是见证奇迹的时刻了,不要眨眼睛奥,千万不要眨眼睛… 3 2 1 砰…
好了,现在总结一下:因为经过了复杂的神经网络之后,out中每个数值都是由很多输入样本的属性(也就是输入数据)线性或者非线性组合而成的,那么out中的每个数值和输入数据的每个数值都有关联,也就是说【out】中的每个数都可以对【a】中每个数求导,那么我们backward()的参数[k1,k2,k3…kn]的含义就是:
也可以理解成每个out分量对an求导时的权重。
对矩阵自动求导
现在,如果out是一个矩阵呢?
下面的例子也可以理解为:相当于一个神经网络有两个样本,每个样本有两个属性,神经网络有两个输出。
import torch from torch.autograd import Variable from torch import nn a = Variable(torch.FloatTensor([[2,3],[1,2]]),requires_grad=True) w = Variable( torch.zeros(2,1),requires_grad=True ) out = torch.mm(a,w) out.backward(torch.FloatTensor([[1.],[1.]]),retain_graph=True) print("gradients are:{}".format(w.grad.data))
如果前面的例子理解了,那么这个也很好理解,backward输入的参数k是一个2x1的矩阵,2代表的就是样本数量,就是在前面的基础上,再对每个样本进行加权求和。结果是:
如果有兴趣,也可以拓展一下多个样本的多分类问题,猜一下k的维度应该是【输入样本的个数 * 分类的个数】
好啦,纠结我好久的pytorch自动求导原理算是彻底搞懂啦~~~
以上这篇浅谈Pytorch中的自动求导函数backward()所需参数的含义就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]