最近在看吴恩达的机器学习课程,自己用python实现了其中的logistic算法,并用梯度下降获取最优值。
logistic分类是一个二分类问题,而我们的线性回归函数
的取值在负无穷到正无穷之间,对于分类问题而言,我们希望假设函数的取值在0~1之间,因此logistic函数的假设函数需要改造一下
由上面的公式可以看出,0 < h(x) < 1,这样,我们可以以1/2为分界线
cost function可以这样定义
其中,m是样本的数量,初始时θ可以随机给定一个初始值,算出一个初始的J(θ)值,再执行梯度下降算法迭代,直到达到最优值,我们知道,迭代的公式主要是每次减少一个偏导量
如果将J(θ)代入化简之后,我们发现可以得到和线性回归相同的迭代函数
按照这个迭代函数不断调整θ的值,直到两次J(θ)的值差值不超过某个极小的值之后,即认为已经达到最优解,这其实只是一个相对较优的解,并不是真正的最优解。 其中,α是学习速率,学习速率越大,就能越快达到最优解,但是学习速率过大可能会让惩罚函数最终无法收敛,整个过程python的实现如下
import math ALPHA = 0.3 DIFF = 0.00001 def predict(theta, data): results = [] for i in range(0, data.__len__()): temp = 0 for j in range(1, theta.__len__()): temp += theta[j] * data[i][j - 1] temp = 1 / (1 + math.e ** (-1 * (temp + theta[0]))) results.append(temp) return results def training(training_data): size = training_data.__len__() dimension = training_data[0].__len__() hxs = [] theta = [] for i in range(0, dimension): theta.append(1) initial = 0 for i in range(0, size): hx = theta[0] for j in range(1, dimension): hx += theta[j] * training_data[i][j] hx = 1 / (1 + math.e ** (-1 * hx)) hxs.append(hx) initial += (-1 * (training_data[i][0] * math.log(hx) + (1 - training_data[i][0]) * math.log(1 - hx))) initial /= size iteration = initial initial = 0 counts = 1 while abs(iteration - initial) > DIFF: print("第", counts, "次迭代, diff=", abs(iteration - initial)) initial = iteration gap = 0 for j in range(0, size): gap += (hxs[j] - training_data[j][0]) theta[0] = theta[0] - ALPHA * gap / size for i in range(1, dimension): gap = 0 for j in range(0, size): gap += (hxs[j] - training_data[j][0]) * training_data[j][i] theta[i] = theta[i] - ALPHA * gap / size for m in range(0, size): hx = theta[0] for j in range(1, dimension): hx += theta[j] * training_data[i][j] hx = 1 / (1 + math.e ** (-1 * hx)) hxs[i] = hx iteration += -1 * (training_data[i][0] * math.log(hx) + (1 - training_data[i][0]) * math.log(1 - hx)) iteration /= size counts += 1 print('training done,theta=', theta) return theta if __name__ == '__main__': training_data = [[1, 1, 1, 1, 0, 0], [1, 1, 0, 1, 0, 0], [1, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 1], [0, 1, 0, 0, 0, 1], [0, 0, 0, 0, 1, 1]] test_data = [[0, 1, 0, 0, 0], [0, 0, 0, 0, 1]] theta = training(training_data) res = predict(theta, test_data) print(res)
运行结果如下
以上这篇python实现logistic分类算法代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]