什么是回溯法
回溯法(探索与回溯法)是一种选优搜索法,又称为试探法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。
无重复元素全排列问题
给定一个所有元素都不同的list,要求返回list元素的全排列。
设n = len(list),那么这个问题可以考虑为n叉树,对这个树进行dfs,这个问题里的回溯点就是深度(也就是templist的长度)为n时,回溯的条件就是当前元素已经出现在templist中了。
回溯法与递归:
回溯法是一种思想,递归是一种形式
class Solution(object): #rtlist用来存储所有的返回所有排列,templist用来生成每个排列 def backtrack(self,rtlist,templist,nums): if(len(templist) == len(nums)): rtlist.append(templist[:]) else: for i in nums: if(i in templist): #如果在当前排列中已经有i了,就continue,相当于分支限界,即不对当前节点子树搜寻了 continue templist.append(i) self.backtrack(rtlist,templist,nums) templist.pop() #把结尾的元素用nums中的下一个值替换掉,遍历下一颗子树 def permute(self,nums): rtlist = [] templist = [] self.backtrack(rtlist,templist,nums) return rtlist
nums=[1,2,3]时的树结构:
关键的就是确定好分支限界以及回溯点。
这里面有一个问题就是每次递归时把新加入的元素从nums删除在递归可不可以,实际上这样的时间复杂度并不会减少太多,因为对list进行操作还需要一定的时间,而原解法中因为有分支限界所以时间复杂度也不会太差。
有重复元素全排列
这个问题和上面的区别主要在于分支限界的差别,不能在使用出现重复元素作为回溯条件了,否则所有的都不满足。
这里我们应该使用计数器记录nums中每个元素出现的次数,如果当前元素超过次数则返回,但是这里还有一个问题就是可能会出现同样的排列多次,这里的解决办法就是同一层不许出现重复元素,这里有两种解决办法,一种是直接传入distinct的数组,还有一种是使用一个集合记录当前层已使用的元素。
第一种方法:
from collections import Counter class Solution(object): def backtrack(self, rtlist, tmplist, counter, nums, length): if len(tmplist) == length:#回溯点 rtlist.append(tmplist[:]) else: for i in nums:#横向遍历 if counter[i] == 0:#分支限界 continue counter[i] -= 1 tmplist.append(i) self.backtrack(rtlist, tmplist, counter, nums, length)#纵向遍历 counter[i] += 1 tmplist.pop() def permuteUnique(self, nums): rtlist, tmplist, counter = [], [], Counter(nums) length = len(nums) self.backtrack(rtlist, tmplist, counter, list(set(nums)), length) return rtlist
第二种
from collections import Counter class Solution(object): def backtrack(self, rtlist, tmplist, level, counter, nums): if len(tmplist) == len(nums): rtlist.append(tmplist[:]) else: for i in nums: if i in level or counter[i] == 0: continue counter[i] -= 1 tmplist.append(i) level.add(i) self.backtrack(rtlist, tmplist, set(), counter, nums) counter[i] += 1 tmplist.pop() def permuteUnique(self, nums): if not nums: return [] rtlist, tmplist, level, counter = [], [], set(), Counter(nums) self.backtrack(rtlist, tmplist, level, counter, nums) return rtlist
在递归时不能用“=”修改父函数的变量,因为“=”只能改变变量的指向,要修改父函数的变量要直接在内存中修改,例如放入容器中可以直接找到变量内存地址。通常使用container.method()。
例如在上面的程序中如果我们想要在回溯点把counter复原不能使用counter = Counter(nums),而是应该逐个修改counter[key]
总结
回溯法其实就是把原问题考虑成一棵树,我们遍历这棵树在不可能的地方返回,不在遍历这个节点的子树,在满足要求时返回。
所以在回溯法中,关键的就是找出合理的分支限界(重要),和返回条件。
更多请参考
多叉树的遍历方法:
def travel(root):
遍历root
for subtree_root in 当前层所有节点:
travel(subtree_root)
在for中对一层的所有节点都执行了travel,又因为对所有节点的所有子树都执行了travel,所以可以完成遍历。
以上这篇python 回溯法模板详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]