使用一阶线性方程预测波士顿房价
载入的数据是随sklearn一起发布的,来自boston 1993年之前收集的506个房屋的数据和价格。load_boston()用于载入数据。
from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split import time from sklearn.linear_model import LinearRegression boston = load_boston() X = boston.data y = boston.target print("X.shape:{}. y.shape:{}".format(X.shape, y.shape)) print('boston.feature_name:{}'.format(boston.feature_names)) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=3) model = LinearRegression() start = time.clock() model.fit(X_train, y_train) train_score = model.score(X_train, y_train) cv_score = model.score(X_test, y_test) print('time used:{0:.6f}; train_score:{1:.6f}, sv_score:{2:.6f}'.format((time.clock()-start), train_score, cv_score))
输出内容为:
X.shape:(506, 13). y.shape:(506,) boston.feature_name:['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO' 'B' 'LSTAT'] time used:0.012403; train_score:0.723941, sv_score:0.794958
可以看到测试集上准确率并不高,应该是欠拟合。
使用多项式做线性回归
上面的例子是欠拟合的,说明模型太简单,无法拟合数据的情况。现在增加模型复杂度,引入多项式。
打个比方,如果原来的特征是[a, b]两个特征,
在degree为2的情况下, 多项式特征变为[1, a, b, a^2, ab, b^2]。degree为其它值的情况依次类推。
多项式特征相当于增加了数据和模型的复杂性,能够更好的拟合。
下面的代码使用Pipeline把多项式特征和线性回归特征连起来,最终测试degree在1、2、3的情况下的得分。
from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split import time from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import Pipeline def polynomial_model(degree=1): polynomial_features = PolynomialFeatures(degree=degree, include_bias=False) linear_regression = LinearRegression(normalize=True) pipeline = Pipeline([('polynomial_features', polynomial_features), ('linear_regression', linear_regression)]) return pipeline boston = load_boston() X = boston.data y = boston.target print("X.shape:{}. y.shape:{}".format(X.shape, y.shape)) print('boston.feature_name:{}'.format(boston.feature_names)) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=3) for i in range(1,4): print( 'degree:{}'.format( i ) ) model = polynomial_model(degree=i) start = time.clock() model.fit(X_train, y_train) train_score = model.score(X_train, y_train) cv_score = model.score(X_test, y_test) print('time used:{0:.6f}; train_score:{1:.6f}, sv_score:{2:.6f}'.format((time.clock()-start), train_score, cv_score))
输出结果为:
X.shape:(506, 13). y.shape:(506,) boston.feature_name:['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO' 'B' 'LSTAT'] degree:1 time used:0.003576; train_score:0.723941, sv_score:0.794958 degree:2 time used:0.030123; train_score:0.930547, sv_score:0.860465 degree:3 time used:0.137346; train_score:1.000000, sv_score:-104.429619
可以看到degree为1和上面不使用多项式是一样的。degree为3在训练集上的得分为1,在测试集上得分是负数,明显过拟合了。
所以最终应该选择degree为2的模型。
二阶多项式比一阶多项式好的多,但是测试集和训练集上的得分仍有不少差距,这可能是数据不够的原因,需要更多的讯据才能进一步提高模型的准确度。
正规方程解法和梯度下降的比较
除了梯度下降法来逼近最优解,也可以使用正规的方程解法直接计算出最终的解来。
根据吴恩达的课程,线性回归最优解为:
theta = (X^T * X)^-1 * X^T * y
其实两种方法各有优缺点:
梯度下降法:
缺点:需要选择学习率,需要多次迭代
优点:特征值很多(1万以上)时仍然能以不错的速度工作
正规方程解法:
优点:不需要设置学习率,不需要多次迭代
缺点:需要计算X的转置和逆,复杂度O3;特征值很多(1万以上)时特变慢
在分类等非线性计算中,正规方程解法并不适用,所以梯度下降法适用范围更广。
以上这篇sklearn+python:线性回归案例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]