对于一个多元函数 使用Python实现牛顿法求极值 用牛顿法求其极小值的迭代格式为

使用Python实现牛顿法求极值

其中 使用Python实现牛顿法求极值 为函数 使用Python实现牛顿法求极值 的梯度向量, 使用Python实现牛顿法求极值 为函数 使用Python实现牛顿法求极值 的Hesse(Hessian)矩阵。

上述牛顿法不是全局收敛的。为此可以引入阻尼牛顿法(又称带步长的牛顿法)。

我们知道,求极值的一般迭代格式为

使用Python实现牛顿法求极值

其中 使用Python实现牛顿法求极值 为搜索步长,使用Python实现牛顿法求极值 为搜索方向(注意所有的迭代格式都是先计算搜索方向,再计算搜索步长,如同瞎子下山一样,先找到哪个方向可行下降,再决定下几步)。

取下降方向 使用Python实现牛顿法求极值 即得阻尼牛顿法,只不过搜索步长 使用Python实现牛顿法求极值 不确定,需要用线性搜索技术确定一个较优的值,比如精确线性搜索或者Goldstein搜索、Wolfe搜索等。特别地,当 使用Python实现牛顿法求极值 一直取为常数1时,就是普通的牛顿法。

以Rosenbrock函数为例,即有

使用Python实现牛顿法求极值

于是可得函数的梯度

使用Python实现牛顿法求极值

函数使用Python实现牛顿法求极值 的Hesse矩阵为

使用Python实现牛顿法求极值

编写Python代码如下(使用版本为Python3.3):

"""
Newton法
Rosenbrock函数
函数 f(x)=100*(x(2)-x(1).^2).^2+(1-x(1)).^2
梯度 g(x)=(-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1)),200*(x(2)-x(1)^2))^(T)
"""

import numpy as np
import matplotlib.pyplot as plt

def jacobian(x):
 return np.array([-400*x[0]*(x[1]-x[0]**2)-2*(1-x[0]),200*(x[1]-x[0]**2)])

def hessian(x):
 return np.array([[-400*(x[1]-3*x[0]**2)+2,-400*x[0]],[-400*x[0],200]])

X1=np.arange(-1.5,1.5+0.05,0.05)
X2=np.arange(-3.5,2+0.05,0.05)
[x1,x2]=np.meshgrid(X1,X2)
f=100*(x2-x1**2)**2+(1-x1)**2; # 给定的函数
plt.contour(x1,x2,f,20) # 画出函数的20条轮廓线


def newton(x0):

 print('初始点为:')
 print(x0,'\n')
 W=np.zeros((2,10**3))
 i = 1
 imax = 1000
 W[:,0] = x0 
 x = x0
 delta = 1
 alpha = 1

 while i<imax and delta>10**(-5):
  p = -np.dot(np.linalg.inv(hessian(x)),jacobian(x))
  x0 = x
  x = x + alpha*p
  W[:,i] = x
  delta = sum((x-x0)**2)
  print('第',i,'次迭代结果:')
  print(x,'\n')
  i=i+1
 W=W[:,0:i] # 记录迭代点
 return W

x0 = np.array([-1.2,1])
W=newton(x0)

plt.plot(W[0,:],W[1,:],'g*',W[0,:],W[1,:]) # 画出迭代点收敛的轨迹
plt.show()

上述代码中jacobian(x)返回函数的梯度,hessian(x)返回函数的Hesse矩阵,用W矩阵记录迭代点的坐标,然后画出点的搜索轨迹。

可得输出结果为

初始点为:
[-1.2 1. ] 

第 1 次迭代结果:
[-1.1752809 1.38067416] 

第 2 次迭代结果:
[ 0.76311487 -3.17503385] 

第 3 次迭代结果:
[ 0.76342968 0.58282478] 

第 4 次迭代结果:
[ 0.99999531 0.94402732] 

第 5 次迭代结果:
[ 0.9999957 0.99999139] 

第 6 次迭代结果:
[ 1. 1.] 

即迭代了6次得到了最优解,画出的迭代点的轨迹如下:

使用Python实现牛顿法求极值

由于主要使用了Python的Numpy模块来进行计算,可以看出,代码和最终的图与Matlab是很相像的。

以上这篇使用Python实现牛顿法求极值就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。