获取数据集,并画图代码如下:

import numpy as np
from sklearn.datasets import make_moons
import matplotlib.pyplot as plt
# 手动生成一个随机的平面点分布,并画出来
np.random.seed(0)
X, y = make_moons(200, noise=0.20)
plt.scatter(X[:,0], X[:,1], s=40, c=y, cmap=plt.cm.Spectral)
plt.show()

得到图如下:

python 画出使用分类器得到的决策边界

定义决策边界函数:

# 咱们先顶一个一个函数来画决策边界
def plot_decision_boundary(pred_func):
 
 # 设定最大最小值,附加一点点边缘填充
 x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
 h = 0.01
 
 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
 
 # 用预测函数预测一下
 Z = pred_func(np.c_[xx.ravel(), yy.ravel()])
 Z = Z.reshape(xx.shape)
 
 # 然后画出图
 plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
 plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral)

定义分类函数,并画出决策边界图代码如下:

from sklearn.linear_model import LogisticRegressionCV
#咱们先来瞄一眼逻辑斯特回归对于它的分类效果
clf = LogisticRegressionCV()
clf.fit(X, y)
 
# 画一下决策边界
plot_decision_boundary(lambda x: clf.predict(x))
plt.title("Logistic Regression")
plt.show()

画图如下:

python 画出使用分类器得到的决策边界

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!