本文介绍了Python小波分析库Pywavelets,分享给大家,具体如下:
# -*- coding: utf-8 -*- import numpy as np import math import matplotlib.pyplot as plt import pandas as pd import datetime from scipy import interpolate from pandas import DataFrame,Series import numpy as np import pywt data = np.linspace(1, 4, 7) # pywt.threshold方法讲解: # pywt.threshold(data,value,mode ='soft',substitute = 0 ) # data:数据集,value:阈值,mode:比较模式默认soft,substitute:替代值,默认0,float类型 #data: [ 1. 1.5 2. 2.5 3. 3.5 4. ] #output:[ 6. 6. 0. 0.5 1. 1.5 2. ] #soft 因为data中1小于2,所以使用6替换,因为data中第二个1.5小于2也被替换,2不小于2所以使用当前值减去2,,2.5大于2,所以2.5-2=0.5..... print(pywt.threshold(data, 2, 'soft',6)) #data: [ 1. 1.5 2. 2.5 3. 3.5 4. ] #hard data中绝对值小于阈值2的替换为6,大于2的不替换 print (pywt.threshold(data, 2, 'hard',6)) #data: [ 1. 1.5 2. 2.5 3. 3.5 4. ] #data中数值小于阈值的替换为6,大于等于的不替换 print (pywt.threshold(data, 2, 'greater',6) ) print (data ) #data: [ 1. 1.5 2. 2.5 3. 3.5 4. ] #data中数值大于阈值的,替换为6 print (pywt.threshold(data, 2, 'less',6) )
[6. 6. 0. 0.5 1. 1.5 2. ]
[6. 6. 2. 2.5 3. 3.5 4. ]
[6. 6. 2. 2.5 3. 3.5 4. ]
[1. 1.5 2. 2.5 3. 3.5 4. ]
[1. 1.5 2. 6. 6. 6. 6. ]
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import pywt import pywt.data ecg = pywt.data.ecg() data1 = np.concatenate((np.arange(1, 400), np.arange(398, 600), np.arange(601, 1024))) x = np.linspace(0.082, 2.128, num=1024)[::-1] data2 = np.sin(40 * np.log(x)) * np.sign((np.log(x))) mode = pywt.Modes.smooth def plot_signal_decomp(data, w, title): """Decompose and plot a signal S. S = An + Dn + Dn-1 + ... + D1 """ w = pywt.Wavelet(w)#选取小波函数 a = data ca = []#近似分量 cd = []#细节分量 for i in range(5): (a, d) = pywt.dwt(a, w, mode)#进行5阶离散小波变换 ca.append(a) cd.append(d) rec_a = [] rec_d = [] for i, coeff in enumerate(ca): coeff_list = [coeff, None] + [None] * i rec_a.append(pywt.waverec(coeff_list, w))#重构 for i, coeff in enumerate(cd): coeff_list = [None, coeff] + [None] * i if i ==3: print(len(coeff)) print(len(coeff_list)) rec_d.append(pywt.waverec(coeff_list, w)) fig = plt.figure() ax_main = fig.add_subplot(len(rec_a) + 1, 1, 1) ax_main.set_title(title) ax_main.plot(data) ax_main.set_xlim(0, len(data) - 1) for i, y in enumerate(rec_a): ax = fig.add_subplot(len(rec_a) + 1, 2, 3 + i * 2) ax.plot(y, 'r') ax.set_xlim(0, len(y) - 1) ax.set_ylabel("A%d" % (i + 1)) for i, y in enumerate(rec_d): ax = fig.add_subplot(len(rec_d) + 1, 2, 4 + i * 2) ax.plot(y, 'g') ax.set_xlim(0, len(y) - 1) ax.set_ylabel("D%d" % (i + 1)) #plot_signal_decomp(data1, 'coif5', "DWT: Signal irregularity") #plot_signal_decomp(data2, 'sym5', # "DWT: Frequency and phase change - Symmlets5") plot_signal_decomp(ecg, 'sym5', "DWT: Ecg sample - Symmlets5") plt.show()
72
5
将数据序列进行小波分解,每一层分解的结果是上次分解得到的低频信号再分解成低频和高频两个部分。如此进过N层分解后源信号X被分解为:X = D1 + D2 + … + DN + AN 其中D1,D2,…,DN分别为第一层、第二层到等N层分解得到的高频信号,AN为第N层分解得到的低频信号。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
暂无评论...
更新日志
2024年11月25日
2024年11月25日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]