本文实例为大家分享了梅尔倒谱系数实现代码,供大家参考,具体内容如下
""" @author: zoutai @file: mymfcc.py @time: 2018/03/26 @description: """ from matplotlib.colors import BoundaryNorm import librosa import librosa.display import numpy import scipy.io.wavfile from scipy.fftpack import dct import matplotlib.pyplot as plt import numpy as np # 第一步-读取音频,画出时域图(采样率-幅度) sample_rate, signal = scipy.io.wavfile.read('OSR_us_000_0010_8k.wav') # File assumed to be in the same directory signal = signal[0:int(3.5 * sample_rate)] # plot the wave time = np.arange(0,len(signal))*(1.0 / sample_rate) # plt.plot(time,signal) plt.xlabel("Time(s)") plt.ylabel("Amplitude") plt.title("Signal in the Time Domain ") plt.grid('on')#标尺,on:有,off:无。 # 第二步-预加重 # 消除高频信号。因为高频信号往往都是相似的, # 通过前后时间相减,就可以近乎抹去高频信号,留下低频信号。 # 原理:y(t)=x(t)"Time(s)") # plt.ylabel("Amplitude") # plt.title("Signal in the Time Domain after Pre-Emphasis") # plt.grid('on')#标尺,on:有,off:无。 # 第三步、取帧,用帧表示 frame_size = 0.025 # 帧长 frame_stride = 0.01 # 步长 # frame_length-一帧对应的采样数, frame_step-一个步长对应的采样数 frame_length, frame_step = frame_size * sample_rate, frame_stride * sample_rate # Convert from seconds to samples signal_length = len(emphasized_signal) # 总的采样数 frame_length = int(round(frame_length)) frame_step = int(round(frame_step)) # 总帧数 num_frames = int(numpy.ceil(float(numpy.abs(signal_length - frame_length)) / frame_step)) # Make sure that we have at least 1 frame pad_signal_length = num_frames * frame_step + frame_length z = numpy.zeros((pad_signal_length - signal_length)) pad_signal = numpy.append(emphasized_signal, z) # Pad Signal to make sure that all frames have equal number of samples without truncating any samples from the original signal # Construct an array by repeating A(200) the number of times given by reps(348). # 这个写法太妙了。目的:用矩阵来表示帧的次数,348*200,348-总的帧数,200-每一帧的采样数 # 第一帧采样为0、1、2...200;第二帧为80、81、81...280..依次类推 indices = numpy.tile(numpy.arange(0, frame_length), (num_frames, 1)) + numpy.tile(numpy.arange(0, num_frames * frame_step, frame_step), (frame_length, 1)).T frames = pad_signal[indices.astype(numpy.int32, copy=False)] # Copy of the array indices # frame:348*200,横坐标348为帧数,即时间;纵坐标200为一帧的200毫秒时间,内部数值代表信号幅度 # plt.matshow(frames, cmap='hot') # plt.colorbar() # plt.figure() # plt.pcolormesh(frames) # 第四步、加汉明窗 # 傅里叶变换默认操作的时间段内前后端点是连续的,即整个时间段刚好是一个周期, # 但是,显示却不是这样的。所以,当这种情况出现时,仍然采用FFT操作时, # 就会将单一频率周期信号认作成多个不同的频率信号的叠加,而不是原始频率,这样就差生了频谱泄漏问题 frames *= numpy.hamming(frame_length) # 相乘,和卷积类似 # # frames *= 0.54 - 0.46 * numpy.cos((2 * numpy.pi * n) / (frame_length - 1)) # Explicit Implementation ** # plt.pcolormesh(frames) # 第五步-傅里叶变换频谱和能量谱 # _raw_fft扫窗重叠,将348*200,扩展成348*512 NFFT = 512 mag_frames = numpy.absolute(numpy.fft.rfft(frames, NFFT)) # Magnitude of the FFT pow_frames = ((1.0 / NFFT) * ((mag_frames) ** 2)) # Power Spectrum # plt.pcolormesh(mag_frames) # # plt.pcolormesh(pow_frames) # 第六步,Filter Banks滤波器组 # 公式:m=2595*log10(1+f/700);f=700(10^(m/2595)−1) nfilt = 40 #窗的数目 low_freq_mel = 0 high_freq_mel = (2595 * numpy.log10(1 + (sample_rate / 2) / 700)) # Convert Hz to Mel mel_points = numpy.linspace(low_freq_mel, high_freq_mel, nfilt + 2) # Equally spaced in Mel scale hz_points = (700 * (10**(mel_points / 2595) - 1)) # Convert Mel to Hz bin = numpy.floor((NFFT + 1) * hz_points / sample_rate) fbank = numpy.zeros((nfilt, int(numpy.floor(NFFT / 2 + 1)))) for m in range(1, nfilt + 1): f_m_minus = int(bin[m - 1]) # left f_m = int(bin[m]) # center f_m_plus = int(bin[m + 1]) # right for k in range(f_m_minus, f_m): fbank[m - 1, k] = (k - bin[m - 1]) / (bin[m] - bin[m - 1]) for k in range(f_m, f_m_plus): fbank[m - 1, k] = (bin[m + 1] - k) / (bin[m + 1] - bin[m]) filter_banks = numpy.dot(pow_frames, fbank.T) filter_banks = numpy.where(filter_banks == 0, numpy.finfo(float).eps, filter_banks) # Numerical Stability filter_banks = 20 * numpy.log10(filter_banks) # dB;348*26 # plt.subplot(111) # plt.pcolormesh(filter_banks.T) # plt.grid('on') # plt.ylabel('Frequency [Hz]') # plt.xlabel('Time [sec]') # plt.show() # # 第七步,梅尔频谱倒谱系数-MFCCs num_ceps = 12 #取12个系数 cep_lifter=22 #倒谱的升个数?? mfcc = dct(filter_banks, type=2, axis=1, norm='ortho')[:, 1 : (num_ceps + 1)] # Keep 2-13 (nframes, ncoeff) = mfcc.shape n = numpy.arange(ncoeff) lift = 1 + (cep_lifter / 2) * numpy.sin(numpy.pi * n / cep_lifter) mfcc *= lift #* # plt.pcolormesh(mfcc.T) # plt.ylabel('Frequency [Hz]') # plt.xlabel('Time [sec]') # 第八步,均值化优化 # to balance the spectrum and improve the Signal-to-Noise (SNR), we can simply subtract the mean of each coefficient from all frames. filter_banks -= (numpy.mean(filter_banks, axis=0) + 1e-8) mfcc -= (numpy.mean(mfcc, axis=0) + 1e-8) # plt.subplot(111) # plt.pcolormesh(mfcc.T) # plt.ylabel('Frequency [Hz]') # plt.xlabel('Time [sec]') # plt.show() # 直接频谱分析 # plot the wave # plt.specgram(signal,Fs = sample_rate, scale_by_freq = True, sides = 'default') # plt.ylabel('Frequency(Hz)') # plt.xlabel('Time(s)') # plt.show() plt.figure(figsize=(10, 4)) mfccs = librosa.feature.melspectrogram(signal,sr=8000,n_fft=512,n_mels=40) librosa.display.specshow(mfccs, x_axis='time') plt.colorbar() plt.title('MFCC') plt.tight_layout() plt.show()
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
暂无评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
2024年11月26日
2024年11月26日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]