概述

最新上传的mcnn中有完整的数据读写示例,可以参考。

关于Tensorflow读取数据,官网给出了三种方法:

  1. 供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据。
  2. 从文件读取数据: 在TensorFlow图的起始, 让一个输入管线从文件中读取数据。
  3. 预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况)。

对于数据量较小而言,可能一般选择直接将数据加载进内存,然后再分batch输入网络进行训练(tip:使用这种方法时,结合yield 使用更为简洁,大家自己尝试一下吧,我就不赘述了)。但是,如果数据量较大,这样的方法就不适用了,因为太耗内存,所以这时最好使用tensorflow提供的队列queue,也就是第二种方法 从文件读取数据。对于一些特定的读取,比如csv文件格式,官网有相关的描述,在这儿我介绍一种比较通用,高效的读取方法(官网介绍的少),即使用tensorflow内定标准格式——TFRecords

太长不看,直接看源码请猛戳我的github,记得加星哦。

TFRecords

TFRecords其实是一种二进制文件,虽然它不如其他格式好理解,但是它能更好的利用内存,更方便复制和移动,并且不需要单独的标签文件(等会儿就知道为什么了)… …总而言之,这样的文件格式好处多多,所以让我们用起来吧。

TFRecords文件包含了tf.train.Example 协议内存块(protocol buffer)(协议内存块包含了字段 Features)。我们可以写一段代码获取你的数据, 将数据填入到Example协议内存块(protocol buffer),将协议内存块序列化为一个字符串, 并且通过tf.python_io.TFRecordWriter 写入到TFRecords文件。

从TFRecords文件中读取数据, 可以使用tf.TFRecordReader的tf.parse_single_example解析器。这个操作可以将Example协议内存块(protocol buffer)解析为张量。

接下来,让我们开始读取数据之旅吧~

生成TFRecords文件

我们使用tf.train.Example来定义我们要填入的数据格式,然后使用tf.python_io.TFRecordWriter来写入。

import os
import tensorflow as tf 
from PIL import Image

cwd = os.getcwd()

'''
此处我加载的数据目录如下:
0 -- img1.jpg
   img2.jpg
   img3.jpg
   ...
1 -- img1.jpg
   img2.jpg
   ...
2 -- ...
 这里的0, 1, 2...就是类别,也就是下文中的classes
 classes是我根据自己数据类型定义的一个列表,大家可以根据自己的数据情况灵活运用
...
'''
writer = tf.python_io.TFRecordWriter("train.tfrecords")
for index, name in enumerate(classes):
  class_path = cwd + name + "/"
  for img_name in os.listdir(class_path):
    img_path = class_path + img_name
      img = Image.open(img_path)
      img = img.resize((224, 224))
    img_raw = img.tobytes()       #将图片转化为原生bytes
    example = tf.train.Example(features=tf.train.Features(feature={
      "label": tf.train.Feature(int64_list=tf.train.Int64List(value=[index])),
      'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))
    }))
    writer.write(example.SerializeToString()) #序列化为字符串
writer.close()

关于Example Feature的相关定义和详细内容,我推荐去官网查看相关API。

基本的,一个Example中包含Features,Features里包含Feature(这里没s)的字典。最后,Feature里包含有一个 FloatList, 或者ByteList,或者Int64List

就这样,我们把相关的信息都存到了一个文件中,所以前面才说不用单独的label文件。而且读取也很方便。

接下来是一个简单的读取小例子:

for serialized_example in tf.python_io.tf_record_iterator("train.tfrecords"):
  example = tf.train.Example()
  example.ParseFromString(serialized_example)

  image = example.features.feature['image'].bytes_list.value
  label = example.features.feature['label'].int64_list.value
  # 可以做一些预处理之类的
  print image, label

使用队列读取

一旦生成了TFRecords文件,为了高效地读取数据,TF中使用队列(queue)读取数据。

def read_and_decode(filename):
  #根据文件名生成一个队列
  filename_queue = tf.train.string_input_producer([filename])

  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)  #返回文件名和文件
  features = tf.parse_single_example(serialized_example,
                    features={
                      'label': tf.FixedLenFeature([], tf.int64),
                      'img_raw' : tf.FixedLenFeature([], tf.string),
                    })

  img = tf.decode_raw(features['img_raw'], tf.uint8)
  img = tf.reshape(img, [224, 224, 3])
  img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
  label = tf.cast(features['label'], tf.int32)

  return img, label

之后我们可以在训练的时候这样使用

img, label = read_and_decode("train.tfrecords")

#使用shuffle_batch可以随机打乱输入
img_batch, label_batch = tf.train.shuffle_batch([img, label],
                        batch_size=30, capacity=2000,
                        min_after_dequeue=1000)
init = tf.initialize_all_variables()

with tf.Session() as sess:
  sess.run(init)
  threads = tf.train.start_queue_runners(sess=sess)
  for i in range(3):
    val, l= sess.run([img_batch, label_batch])
    #我们也可以根据需要对val, l进行处理
    #l = to_categorical(l, 12) 
    print(val.shape, l)

至此,tensorflow高效从文件读取数据差不多完结了。

恩?等等…什么叫差不多?对了,还有几个注意事项:

第一,tensorflow里的graph能够记住状态(state),这使得TFRecordReader能够记住tfrecord的位置,并且始终能返回下一个。而这就要求我们在使用之前,必须初始化整个graph,这里我们使用了函数tf.initialize_all_variables()来进行初始化。

第二,tensorflow中的队列和普通的队列差不多,不过它里面的operation和tensor都是符号型的(symbolic),在调用sess.run()时才执行。

第三, TFRecordReader会一直弹出队列中文件的名字,直到队列为空。

总结

  1. 生成tfrecord文件
  2. 定义record reader解析tfrecord文件
  3. 构造一个批生成器(batcher)
  4. 构建其他的操作
  5. 初始化所有的操作
  6. 启动QueueRunner

例子代码请戳我的github,如果觉得对你有帮助的话可以加个星哦。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。