Python在程序并行化方面多少有些声名狼藉。撇开技术上的问题,例如线程的实现和GIL,我觉得错误的教学指导才是主要问题。常见的经典Python多线程、多进程教程多显得偏"重"。而且往往隔靴搔痒,没有深入探讨日常工作中最有用的内容。
传统的例子
简单搜索下"Python多线程教程",不难发现几乎所有的教程都给出涉及类和队列的例子:
#Example.py ''' Standard Producer/Consumer Threading Pattern ''' import time import threading import Queue class Consumer(threading.Thread): def __init__(self, queue): threading.Thread.__init__(self) self._queue = queue def run(self): while True: # queue.get() blocks the current thread until # an item is retrieved. msg = self._queue.get() # Checks if the current message is # the "Poison Pill" if isinstance(msg, str) and msg == 'quit': # if so, exists the loop break # "Processes" (or in our case, prints) the queue item print "I'm a thread, and I received %s!!" % msg # Always be friendly! print 'Bye byes!' def Producer(): # Queue is used to share items between # the threads. queue = Queue.Queue() # Create an instance of the worker worker = Consumer(queue) # start calls the internal run() method to # kick off the thread worker.start() # variable to keep track of when we started start_time = time.time() # While under 5 seconds.. while time.time() - start_time < 5: # "Produce" a piece of work and stick it in # the queue for the Consumer to process queue.put('something at %s' % time.time()) # Sleep a bit just to avoid an absurd number of messages time.sleep(1) # This the "poison pill" method of killing a thread. queue.put('quit') # wait for the thread to close down worker.join() if __name__ == '__main__': Producer()
哈,看起来有些像 Java 不是吗?
我并不是说使用生产者/消费者模型处理多线程/多进程任务是错误的(事实上,这一模型自有其用武之地)。只是,处理日常脚本任务时我们可以使用更有效率的模型。
问题在于…
首先,你需要一个样板类;
其次,你需要一个队列来传递对象;
而且,你还需要在通道两端都构建相应的方法来协助其工作(如果需想要进行双向通信或是保存结果还需要再引入一个队列)。
worker越多,问题越多
按照这一思路,你现在需要一个worker线程的线程池。下面是一篇IBM经典教程中的例子——在进行网页检索时通过多线程进行加速。
#Example2.py ''' A more realistic thread pool example ''' import time import threading import Queue import urllib2 class Consumer(threading.Thread): def __init__(self, queue): threading.Thread.__init__(self) self._queue = queue def run(self): while True: content = self._queue.get() if isinstance(content, str) and content == 'quit': break response = urllib2.urlopen(content) print 'Bye byes!' def Producer(): urls = [ 'http://www.python.org', 'http://www.yahoo.com' 'http://www.scala.org', 'http://www.google.com' # etc.. ] queue = Queue.Queue() worker_threads = build_worker_pool(queue, 4) start_time = time.time() # Add the urls to process for url in urls: queue.put(url) # Add the poison pillv for worker in worker_threads: queue.put('quit') for worker in worker_threads: worker.join() print 'Done! Time taken: {}'.format(time.time() - start_time) def build_worker_pool(queue, size): workers = [] for _ in range(size): worker = Consumer(queue) worker.start() workers.append(worker) return workers if __name__ == '__main__': Producer()
这段代码能正确的运行,但仔细看看我们需要做些什么:构造不同的方法、追踪一系列的线程,还有为了解决恼人的死锁问题,我们需要进行一系列的join操作。这还只是开始……
至此我们回顾了经典的多线程教程,多少有些空洞不是吗?样板化而且易出错,这样事倍功半的风格显然不那么适合日常使用,好在我们还有更好的方法。
何不试试 map
map这一小巧精致的函数是简捷实现Python程序并行化的关键。map源于Lisp这类函数式编程语言。它可以通过一个序列实现两个函数之间的映射。
urls = ['http://www.yahoo.com', 'http://www.reddit.com'] results = map(urllib2.urlopen, urls)
上面的这两行代码将 urls 这一序列中的每个元素作为参数传递到 urlopen 方法中,并将所有结果保存到 results 这一列表中。其结果大致相当于:
results = [] for url in urls: results.append(urllib2.urlopen(url))
map 函数一手包办了序列操作、参数传递和结果保存等一系列的操作。
为什么这很重要呢?这是因为借助正确的库,map可以轻松实现并行化操作。
在Python中有个两个库包含了map函数: multiprocessing和它鲜为人知的子库 multiprocessing.dummy.
这里多扯两句:multiprocessing.dummy? mltiprocessing库的线程版克隆?这是虾米?即便在multiprocessing库的官方文档里关于这一子库也只有一句相关描述。而这句描述译成人话基本就是说:"嘛,有这么个东西,你知道就成."相信我,这个库被严重低估了!
dummy是multiprocessing模块的完整克隆,唯一的不同在于multiprocessing作用于进程,而dummy模块作用于线程(因此也包括了Python所有常见的多线程限制)。
所以替换使用这两个库异常容易。你可以针对IO密集型任务和CPU密集型任务来选择不同的库。
动手尝试
使用下面的两行代码来引用包含并行化map函数的库:
from multiprocessing import Pool from multiprocessing.dummy import Pool as ThreadPool
实例化 Pool 对象:
pool = ThreadPool()
这条简单的语句替代了example2.py中buildworkerpool函数7行代码的工作。它生成了一系列的worker线程并完成初始化工作、将它们储存在变量中以方便访问。
Pool对象有一些参数,这里我所需要关注的只是它的第一个参数:processes. 这一参数用于设定线程池中的线程数。其默认值为当前机器CPU的核数。
一般来说,执行CPU密集型任务时,调用越多的核速度就越快。但是当处理网络密集型任务时,事情有有些难以预计了,通过实验来确定线程池的大小才是明智的。
pool = ThreadPool(4) # Sets the pool size to 4
线程数过多时,切换线程所消耗的时间甚至会超过实际工作时间。对于不同的工作,通过尝试来找到线程池大小的最优值是个不错的主意。
创建好Pool对象后,并行化的程序便呼之欲出了。我们来看看改写后的example2.py
import urllib2 from multiprocessing.dummy import Pool as ThreadPool urls = [ 'http://www.python.org', 'http://www.python.org/about/', 'http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html', 'http://www.python.org/doc/', 'http://www.python.org/download/', 'http://www.python.org/getit/', 'http://www.python.org/community/', 'https://wiki.python.org/moin/', 'http://planet.python.org/', 'https://wiki.python.org/moin/LocalUserGroups', 'http://www.python.org/psf/', 'http://docs.python.org/devguide/', 'http://www.python.org/community/awards/' # etc.. ] # Make the Pool of workers pool = ThreadPool(4) # Open the urls in their own threads # and return the results results = pool.map(urllib2.urlopen, urls) #close the pool and wait for the work to finish pool.close() pool.join()
实际起作用的代码只有4行,其中只有一行是关键的。map函数轻而易举的取代了前文中超过40行的例子。为了更有趣一些,我统计了不同方法、不同线程池大小的耗时情况。
# results = [] # for url in urls: # result = urllib2.urlopen(url) # results.append(result) # # ------- VERSUS ------- # # # ------- 4 Pool ------- # # pool = ThreadPool(4) # results = pool.map(urllib2.urlopen, urls) # # ------- 8 Pool ------- # # pool = ThreadPool(8) # results = pool.map(urllib2.urlopen, urls) # # ------- 13 Pool ------- # # pool = ThreadPool(13) # results = pool.map(urllib2.urlopen, urls)
结果:
# Single thread: 14.4 Seconds
# 4 Pool: 3.1 Seconds
# 8 Pool: 1.4 Seconds
# 13 Pool: 1.3 Seconds
很棒的结果不是吗?这一结果也说明了为什么要通过实验来确定线程池的大小。在我的机器上当线程池大小大于9带来的收益就十分有限了。
另一个真实的例子
生成上千张图片的缩略图
这是一个CPU密集型的任务,并且十分适合进行并行化。
基础单进程版本
import os import PIL from multiprocessing import Pool from PIL import Image SIZE = (75,75) SAVE_DIRECTORY = 'thumbs' def get_image_paths(folder): return (os.path.join(folder, f) for f in os.listdir(folder) if 'jpeg' in f) def create_thumbnail(filename): im = Image.open(filename) im.thumbnail(SIZE, Image.ANTIALIAS) base, fname = os.path.split(filename) save_path = os.path.join(base, SAVE_DIRECTORY, fname) im.save(save_path) if __name__ == '__main__': folder = os.path.abspath( '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840') os.mkdir(os.path.join(folder, SAVE_DIRECTORY)) images = get_image_paths(folder) for image in images: create_thumbnail(Image)
上边这段代码的主要工作就是将遍历传入的文件夹中的图片文件,一一生成缩略图,并将这些缩略图保存到特定文件夹中。
这我的机器上,用这一程序处理6000张图片需要花费27.9秒。
如果我们使用map函数来代替for循环:
import os import PIL from multiprocessing import Pool from PIL import Image SIZE = (75,75) SAVE_DIRECTORY = 'thumbs' def get_image_paths(folder): return (os.path.join(folder, f) for f in os.listdir(folder) if 'jpeg' in f) def create_thumbnail(filename): im = Image.open(filename) im.thumbnail(SIZE, Image.ANTIALIAS) base, fname = os.path.split(filename) save_path = os.path.join(base, SAVE_DIRECTORY, fname) im.save(save_path) if __name__ == '__main__': folder = os.path.abspath( '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840') os.mkdir(os.path.join(folder, SAVE_DIRECTORY)) images = get_image_paths(folder) pool = Pool() pool.map(creat_thumbnail, images) pool.close() pool.join()
5.6 秒!
虽然只改动了几行代码,我们却明显提高了程序的执行速度。在生产环境中,我们可以为CPU密集型任务和IO密集型任务分别选择多进程和多线程库来进一步提高执行速度——这也是解决死锁问题的良方。此外,由于map函数并不支持手动线程管理,反而使得相关的debug工作也变得异常简单。
到这里,我们就实现了(基本)通过一行Python实现并行化。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]