1.反变换法

设需产生分布函数为F(x)的连续随机数X。若已有[0,1]区间均匀分布随机数R,则产生X的反变换公式为:

F(x)=r, 即x=F-1(r)

反函数存在条件:如果函数y=f(x)是定义域D上的单调函数,那么f(x)一定有反函数存在,且反函数一定是单调的。分布函数F(x)为是一个单调递增函数,所以其反函数存在。从直观意义上理解,因为r一一对应着x,而在[0,1]均匀分布随机数R≤r的概率P(R≤r)=r。 因此,连续随机数X≤x的概率P(X≤x)=P(R≤r)=r=F(x)

即X的分布函数为F(x)。

例子:下面的代码使用反变换法在区间[0, 6]上生成随机数,其概率密度近似为P(x)=e-x

import numpy as np
import matplotlib.pyplot as plt
# probability distribution we're trying to calculate
p = lambda x: np.exp(-x)
# CDF of p
CDF = lambda x: 1-np.exp(-x)
# invert the CDF
invCDF = lambda x: -np.log(1-x)
# domain limits
xmin = 0 # the lower limit of our domain
xmax = 6 # the upper limit of our domain
# range limits
rmin = CDF(xmin)
rmax = CDF(xmax)
N = 10000 # the total of samples we wish to generate
# generate uniform samples in our range then invert the CDF
# to get samples of our target distribution
R = np.random.uniform(rmin, rmax, N)
X = invCDF(R)
# get the histogram info
hinfo = np.histogram(X,100)
# plot the histogram
plt.hist(X,bins=100, label=u'Samples');
# plot our (normalized) function
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*p(xvals), 'r', label=u'p(x)')
# turn on the legend
plt.legend()
plt.show()

Python编程产生非均匀随机数的几种方法代码分享

一般来说,直方图的外廓曲线接近于总体X的概率密度曲线。

2.舍选抽样法(Rejection Methold)

用反变换法生成随机数时,如果求不出F-1(x)的解析形式或者F(x)就没有解析形式,则可以用F-1(x)的近似公式代替。但是由于反函数计算量较大,有时也是很不适宜的。另一种方法是由Von Neumann提出的舍选抽样法。下图中曲线w(x)为概率密度函数,按该密度函数产生随机数的方法如下:

Python编程产生非均匀随机数的几种方法代码分享

基本的rejection methold步骤如下:

1. Draw x uniformly from [xmin xmax]

2. Draw x uniformly from [0, ymax]

3. if y < w(x),accept the sample, otherwise reject it

4. repeat

即落在曲线w(x)和X轴所围成区域内的点接受,落在该区域外的点舍弃。

例子:下面的代码使用basic rejection sampling methold在区间[0, 10]上生成随机数,其概率密度近似为P(x)=e-x

# -*- coding: utf-8 -*-
'''
The following code produces samples that follow the distribution P(x)=e^"text-align: center">Python编程产生非均匀随机数的几种方法代码分享

3.推广的舍取抽样法

从上图中可以看出,基本的rejection methold法抽样效率很低,因为随机数x和y是在区间[xmin xmax]和区间[0 ymax]上均匀分布的,产生的大部分点不会落在w(x)曲线之下(曲线e-x的形状一边高一边低,其曲线下的面积占矩形面积的比例很小,则舍选抽样效率很低)。为了改进简单舍选抽样法的效率,可以构造一个新的密度函数q(x)(called a proposal distribution from which we can readily draw samples),使它的形状接近p(x),并选择一个常数k使得kq(x)≥w(x)对于x定义域内的值都成立。对应下图,首先从分布q(z)中生成随机数z0,然后按均匀分布从区间[0 kq(z0)]生成一个随机数u0。 if u0 > p(z0) then the sample is rejected,otherwise u0 is retained. 即下图中灰色区域内的点都要舍弃。可见,由于随机点u0只出现在曲线kq(x)之下,且在q(x)较大处出现次数较多,从而大大提高了采样效率。显然q(x)形状越接近p(x),则采样效率越高。

Python编程产生非均匀随机数的几种方法代码分享

根据上述思想,也可以表达采样规则如下:

1. Draw x from your proposal distribution q(x)

2. Draw y uniformly from [0 1]

3. if y < p(x)/kq(x) , accept the sample, otherwise reject it

4. repeat

下面例子中选择函数p(x)=1/(x+1)作为proposal distribution,k=1。曲线1/(x+1)的形状与e-x相近。

import numpy as np
import matplotlib.pyplot as plt
p = lambda x: np.exp(-x)     # our distribution
g = lambda x: 1/(x+1)      # our proposal pdf (we're choosing k to be 1)
CDFg = lambda x: np.log(x +1)  # generates our proposal using inverse sampling
# domain limits
xmin = 0 # the lower limit of our domain
xmax = 10 # the upper limit of our domain
# range limits for inverse sampling
umin = CDFg(xmin)
umax = CDFg(xmax)
N = 10000 # the total of samples we wish to generate
accepted = 0 # the number of accepted samples
samples = np.zeros(N)
count = 0 # the total count of proposals
# generation loop
while (accepted < N):
    # Sample from g using inverse sampling
  u = np.random.uniform(umin, umax)
  xproposal = np.exp(u) - 1
  # pick a uniform number on [0, 1)
  y = np.random.uniform(0, 1)
  # Do the accept/reject comparison
  if y < p(xproposal)/g(xproposal):
    samples[accepted] = xproposal
    accepted += 1
    count +=1
  print count, accepted
# get the histogram info
hinfo = np.histogram(samples,50)
# plot the histogram
plt.hist(samples,bins=50, label=u'Samples');
# plot our (normalized) function
xvals=np.linspace(xmin, xmax, 1000)
plt.plot(xvals, hinfo[0][0]*p(xvals), 'r', label=u'p(x)')
# turn on the legend
plt.legend()
plt.show()

 >

24051 10000

Python编程产生非均匀随机数的几种方法代码分享

可以对比基本的舍取法和改进的舍取法的结果,前者产生符合要求分布的10000个随机数运算了99552步,后者运算了24051步,可以看到效率明显提高。

总结

以上就是本文关于Python编程产生非均匀随机数的几种方法代码分享的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

Python数据可视化编程通过Matplotlib创建散点图代码示例

Python编程实现使用线性回归预测数据

Python数据可视化正态分布简单分析及实现代码

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?