前序:... 1
一、 版本... 1
二、 基本编译... 2
三、 SQLITE操作入门... 2
(1) 基本流程... 2
(2) SQL语句操作... 4
(3) 操作二进制... 8
(4) 事务处理... 10
四、 给数据库加密... 10
五、 后记... 25
前序:
Sqlite3 的确很好用。小巧、速度快。但是因为非微软的产品,帮助文档总觉得不够。这些天再次研究它,又有一些收获,这里把我对 sqlite3 的研究列出来,以备忘记。
这里要注明,我是一个跨平台专注者,并不喜欢只用 windows 平台。我以前的工作就是为 unix 平台写代码。下面我所写的东西,虽然没有验证,但是我已尽量不使用任何 windows 的东西,只使用标准 C 或标准C++。但是,我没有尝试过在别的系统、别的编译器下编译,因此下面的叙述如果不正确,则留待以后修改。
下面我的代码仍然用 VC 编写,因为我觉得VC是一个很不错的IDE,可以加快代码编写速度(例如配合 Vassist )。下面我所说的编译环境,是VC2003。如果读者觉得自己习惯于 unix 下用 vi 编写代码速度较快,可以不用管我的说明,只需要符合自己习惯即可,因为我用的是标准 C 或 C++ 。不会给任何人带来不便。
一、 版本
从 www.sqlite.org 网站可下载到最新的 sqlite 代码和编译版本。我写此文章时,最新代码是 3.3.17 版本。
很久没有去下载 sqlite 新代码,因此也不知道 sqlite 变化这么大。以前很多文件,现在全部合并成一个 sqlite3.c 文件。如果单独用此文件,是挺好的,省去拷贝一堆文件还担心有没有遗漏。但是也带来一个问题:此文件太大,快接近7万行代码,VC开它整个机器都慢下来了。如果不需要改它代码,也就不需要打开 sqlite3.c 文件,机器不会慢。但是,下面我要写通过修改 sqlite 代码完成加密功能,那时候就比较痛苦了。如果个人水平较高,建议用些简单的编辑器来编辑,例如 UltraEdit 或 Notepad 。速度会快很多。
二、 基本编译
这个不想多说了,在 VC 里新建 dos 控制台空白工程,把 sqlite3.c 和 sqlite3.h 添加到工程,再新建一个 main.cpp 文件。在里面写:
复制代码 代码如下:
extern "C"
{
#include "./sqlite3.h"
};
int main( int , char** )
{
return 0;
}
为什么要 extern “C” ?如果问这个问题,我不想说太多,这是C++的基础。要在 C++ 里使用一段 C 的代码,必须要用 extern “C” 括起来。C++跟 C虽然语法上有重叠,但是它们是两个不同的东西,内存里的布局是完全不同的,在C++编译器里不用extern “C”括起C代码,会导致编译器不知道该如何为 C 代码描述内存布局。
可能在 sqlite3.c 里人家已经把整段代码都 extern “C” 括起来了,但是你遇到一个 .c 文件就自觉的再括一次,也没什么不好。
基本工程就这样建立起来了。编译,可以通过。但是有一堆的 warning。可以不管它。
三、 SQLITE操作入门
sqlite提供的是一些C函数接口,你可以用这些函数操作数据库。通过使用这些接口,传递一些标准 sql 语句(以 char * 类型)给 sqlite 函数,sqlite 就会为你操作数据库。
sqlite 跟MS的access一样是文件型数据库,就是说,一个数据库就是一个文件,此数据库里可以建立很多的表,可以建立索引、触发器等等,但是,它实际上得到的就是一个文件。备份这个文件就备份了整个数据库。
sqlite 不需要任何数据库引擎,这意味着如果你需要 sqlite 来保存一些用户数据,甚至都不需要安装数据库(如果你做个小软件还要求人家必须装了sqlserver 才能运行,那也太黑心了)。
下面开始介绍数据库基本操作。
(1) 基本流程
i.1 关键数据结构
sqlite 里最常用到的是 sqlite3 * 类型。从数据库打开开始,sqlite就要为这个类型准备好内存,直到数据库关闭,整个过程都需要用到这个类型。当数据库打开时开始,这个类型的变量就代表了你要操作的数据库。下面再详细介绍。
i.2 打开数据库
int sqlite3_open( 文件名, sqlite3 ** );
用这个函数开始数据库操作。
需要传入两个参数,一是数据库文件名,比如:c://DongChunGuang_Database.db。
文件名不需要一定存在,如果此文件不存在,sqlite 会自动建立它。如果它存在,就尝试把它当数据库文件来打开。
sqlite3 ** 参数即前面提到的关键数据结构。这个结构底层细节如何,你不要关它。
函数返回值表示操作是否正确,如果是 SQLITE_OK 则表示操作正常。相关的返回值sqlite定义了一些宏。具体这些宏的含义可以参考 sqlite3.h 文件。里面有详细定义(顺便说一下,sqlite3 的代码注释率自称是非常高的,实际上也的确很高。只要你会看英文,sqlite 可以让你学到不少东西)。
下面介绍关闭数据库后,再给一段参考代码。
i.3 关闭数据库
int sqlite3_close(sqlite3 *);
前面如果用 sqlite3_open 开启了一个数据库,结尾时不要忘了用这个函数关闭数据库。
下面给段简单的代码:
复制代码 代码如下:
extern "C"
{
#include "./sqlite3.h"
};
int main( int , char** )
{
sqlite3 * db = NULL; //声明sqlite关键结构指针
int result;
//打开数据库
//需要传入 db 这个指针的指针,因为 sqlite3_open 函数要为这个指针分配内存,还要让db指针指向这个内存区
result = sqlite3_open( “c://Dcg_database.db”, &db );
if( result != SQLITE_OK )
{
//数据库打开失败
return -1;
}
//数据库操作代码
//…
//数据库打开成功
//关闭数据库
sqlite3_close( db );
return 0;
}
这就是一次数据库操作过程。
(2) SQL语句操作
本节介绍如何用sqlite 执行标准 sql 语法。
i.1 执行sql语句
int sqlite3_exec(sqlite3*, const char *sql, sqlite3_callback, void *, char **errmsg );
这就是执行一条 sql 语句的函数。
第1个参数不再说了,是前面open函数得到的指针。说了是关键数据结构。
第2个参数const char *sql 是一条 sql 语句,以/0结尾。
第3个参数sqlite3_callback 是回调,当这条语句执行之后,sqlite3会去调用你提供的这个函数。(什么是回调函数,自己找别的资料学习)
第4个参数void * 是你所提供的指针,你可以传递任何一个指针参数到这里,这个参数最终会传到回调函数里面,如果不需要传递指针给回调函数,可以填NULL。等下我们再看回调函数的写法,以及这个参数的使用。
第5个参数char ** errmsg 是错误信息。注意是指针的指针。sqlite3里面有很多固定的错误信息。执行 sqlite3_exec 之后,执行失败时可以查阅这个指针(直接 printf(“%s/n”,errmsg))得到一串字符串信息,这串信息告诉你错在什么地方。sqlite3_exec函数通过修改你传入的指针的指针,把你提供的指针指向错误提示信息,这样sqlite3_exec函数外面就可以通过这个 char*得到具体错误提示。
说明:通常,sqlite3_callback 和它后面的 void * 这两个位置都可以填 NULL。填NULL表示你不需要回调。比如你做 insert 操作,做 delete 操作,就没有必要使用回调。而当你做 select 时,就要使用回调,因为 sqlite3 把数据查出来,得通过回调告诉你查出了什么数据。
i.2 exec 的回调
typedef int (*sqlite3_callback)(void*,int,char**, char**);
你的回调函数必须定义成上面这个函数的类型。下面给个简单的例子:
复制代码 代码如下:
//sqlite3的回调函数
// sqlite 每查到一条记录,就调用一次这个回调
int LoadMyInfo( void * para, int n_column, char ** column_value, char ** column_name )
{
//para是你在 sqlite3_exec 里传入的 void * 参数
//通过para参数,你可以传入一些特殊的指针(比如类指针、结构指针),然后在这里面强制转换成对应的类型(这里面是void*类型,必须强制转换成你的类型才可用)。然后操作这些数据
//n_column是这一条记录有多少个字段 (即这条记录有多少列)
// char ** column_value 是个关键值,查出来的数据都保存在这里,它实际上是个1维数组(不要以为是2维数组),每一个元素都是一个 char * 值,是一个字段内容(用字符串来表示,以/0结尾)
//char ** column_name 跟 column_value是对应的,表示这个字段的字段名称
//这里,我不使用 para 参数。忽略它的存在.
int i;
printf( “记录包含 %d 个字段/n”, n_column );
for( i = 0 ; i < n_column; i ++ )
{
printf( “字段名:%s ß> 字段值:%s/n”, column_name[i], column_value[i] );
}
printf( “------------------/n“ );
return 0;
}
int main( int , char ** )
{
sqlite3 * db;
int result;
char * errmsg = NULL;
result = sqlite3_open( “c://Dcg_database.db”, &db );
if( result != SQLITE_OK )
{
//数据库打开失败
return -1;
}
//数据库操作代码
//创建一个测试表,表名叫 MyTable_1,有2个字段: ID 和 name。其中ID是一个自动增加的类型,以后insert时可以不去指定这个字段,它会自己从0开始增加
result = sqlite3_exec( db, “create table MyTable_1( ID integer primary key autoincrement, name nvarchar(32) )”, NULL, NULL, errmsg );
if(result != SQLITE_OK )
{
printf( “创建表失败,错误码:%d,错误原因:%s/n”, result, errmsg );
}
//插入一些记录
result = sqlite3_exec( db, “insert into MyTable_1( name ) values ( ‘走路' )”, 0, 0, errmsg );
if(result != SQLITE_OK )
{
printf( “插入记录失败,错误码:%d,错误原因:%s/n”, result, errmsg );
}
result = sqlite3_exec( db, “insert into MyTable_1( name ) values ( ‘骑单车' )”, 0, 0, errmsg );
if(result != SQLITE_OK )
{
printf( “插入记录失败,错误码:%d,错误原因:%s/n”, result, errmsg );
}
result = sqlite3_exec( db, “insert into MyTable_1( name ) values ( ‘坐汽车' )”, 0, 0, errmsg );
if(result != SQLITE_OK )
{
printf( “插入记录失败,错误码:%d,错误原因:%s/n”, result, errmsg );
}
//开始查询数据库
result = sqlite3_exec( db, “select * from MyTable_1”, LoadMyInfo, NULL, errmsg );
//关闭数据库
sqlite3_close( db );
return 0;
}
通过上面的例子,应该可以知道如何打开一个数据库,如何做数据库基本操作。
有这些知识,基本上可以应付很多数据库操作了。
i.3 不使用回调查询数据库
上面介绍的 sqlite3_exec 是使用回调来执行 select 操作。还有一个方法可以直接查询而不需要回调。但是,我个人感觉还是回调好,因为代码可以更加整齐,只不过用回调很麻烦,你得声明一个函数,如果这个函数是类成员函数,你还不得不把它声明成 static 的(要问为什么?这又是C++基础了。C++成员函数实际上隐藏了一个参数:this,C++调用类的成员函数的时候,隐含把类指针当成函数的第一个参数传递进去。结果,这造成跟前面说的 sqlite 回调函数的参数不相符。只有当把成员函数声明成 static 时,它才没有多余的隐含的this参数)。
虽然回调显得代码整齐,但有时候你还是想要非回调的 select 查询。这可以通过 sqlite3_get_table 函数做到。
int sqlite3_get_table(sqlite3*, const char *sql, char ***resultp, int *nrow, int *ncolumn, char **errmsg );
第1个参数不再多说,看前面的例子。
第2个参数是 sql 语句,跟 sqlite3_exec 里的 sql 是一样的。是一个很普通的以/0结尾的char *字符串。
第3个参数是查询结果,它依然一维数组(不要以为是二维数组,更不要以为是三维数组)。它内存布局是:第一行是字段名称,后面是紧接着是每个字段的值。下面用例子来说事。
第4个参数是查询出多少条记录(即查出多少行)。
第5个参数是多少个字段(多少列)。
第6个参数是错误信息,跟前面一样,这里不多说了。
下面给个简单例子:
复制代码 代码如下:
int main( int , char ** )
{
sqlite3 * db;
int result;
char * errmsg = NULL;
char **dbResult; //是 char ** 类型,两个*号
int nRow, nColumn;
int i , j;
int index;
result = sqlite3_open( “c://Dcg_database.db”, &db );
if( result != SQLITE_OK )
{
//数据库打开失败
return -1;
}
//数据库操作代码
//假设前面已经创建了 MyTable_1 表
//开始查询,传入的 dbResult 已经是 char **,这里又加了一个 & 取地址符,传递进去的就成了 char ***
result = sqlite3_get_table( db, “select * from MyTable_1”, &dbResult, &nRow, &nColumn, &errmsg );
if( SQLITE_OK == result )
{
//查询成功
index = nColumn; //前面说过 dbResult 前面第一行数据是字段名称,从 nColumn 索引开始才是真正的数据
printf( “查到%d条记录/n”, nRow );
for( i = 0; i < nRow ; i++ )
{
printf( “第 %d 条记录/n”, i+1 );
for( j = 0 ; j < nColumn; j++ )
{
printf( “字段名:%s ß> 字段值:%s/n”, dbResult[j], dbResult [index] );
++index; // dbResult 的字段值是连续的,从第0索引到第 nColumn - 1索引都是字段名称,从第 nColumn 索引开始,后面都是字段值,它把一个二维的表(传统的行列表示法)用一个扁平的形式来表示
}
printf( “-------/n” );
}
}
//到这里,不论数据库查询是否成功,都释放 char** 查询结果,使用 sqlite 提供的功能来释放
sqlite3_free_table( dbResult );
//关闭数据库
sqlite3_close( db );
return 0;
}
到这个例子为止,sqlite3 的常用用法都介绍完了。
用以上的方法,再配上 sql 语句,完全可以应付绝大多数数据库需求。
但有一种情况,用上面方法是无法实现的:需要insert、select 二进制。当需要处理二进制数据时,上面的方法就没办法做到。下面这一节说明如何插入二进制数据
(2) 操作二进制
sqlite 操作二进制数据需要用一个辅助的数据类型:sqlite3_stmt * 。
这个数据类型记录了一个“sql语句”。为什么我把 “sql语句” 用双引号引起来?因为你可以把 sqlite3_stmt * 所表示的内容看成是 sql语句,但是实际上它不是我们所熟知的sql语句。它是一个已经把sql语句解析了的、用sqlite自己标记记录的内部数据结构。
正因为这个结构已经被解析了,所以你可以往这个语句里插入二进制数据。当然,把二进制数据插到 sqlite3_stmt 结构里可不能直接 memcpy ,也不能像 std::string 那样用 + 号。必须用 sqlite 提供的函数来插入。
i.1 写入二进制
下面说写二进制的步骤。
要插入二进制,前提是这个表的字段的类型是 blob 类型。我假设有这么一张表:
create table Tbl_2( ID integer, file_content blob )
首先声明
sqlite3_stmt * stat;
然后,把一个 sql 语句解析到 stat 结构里去:
sqlite3_prepare( db, “insert into Tbl_2( ID, file_content) values( 10, ? )”, -1, &stat, 0 );
上面的函数完成 sql 语句的解析。第一个参数跟前面一样,是个 sqlite3 * 类型变量,第二个参数是一个 sql 语句。
这个 sql 语句特别之处在于 values 里面有个 ? 号。在sqlite3_prepare函数里,?号表示一个未定的值,它的值等下才插入。
第三个参数我写的是-1,这个参数含义是前面 sql 语句的长度。如果小于0,sqlite会自动计算它的长度(把sql语句当成以/0结尾的字符串)。
第四个参数是 sqlite3_stmt 的指针的指针。解析以后的sql语句就放在这个结构里。
第五个参数我也不知道是干什么的。为0就可以了。
如果这个函数执行成功(返回值是 SQLITE_OK 且 stat 不为NULL ),那么下面就可以开始插入二进制数据。
sqlite3_bind_blob( stat, 1, pdata, (int)(length_of_data_in_bytes), NULL ); // pdata为数据缓冲区,length_of_data_in_bytes为数据大小,以字节为单位
这个函数一共有5个参数。
第1个参数:是前面prepare得到的 sqlite3_stmt * 类型变量。
第2个参数:?号的索引。前面prepare的sql语句里有一个?号,假如有多个?号怎么插入?方法就是改变 bind_blob 函数第2个参数。这个参数我写1,表示这里插入的值要替换 stat 的第一个?号(这里的索引从1开始计数,而非从0开始)。如果你有多个?号,就写多个 bind_blob 语句,并改变它们的第2个参数就替换到不同的?号。如果有?号没有替换,sqlite为它取值null。
第3个参数:二进制数据起始指针。
第4个参数:二进制数据的长度,以字节为单位。
第5个参数:是个析够回调函数,告诉sqlite当把数据处理完后调用此函数来析够你的数据。这个参数我还没有使用过,因此理解也不深刻。但是一般都填NULL,需要释放的内存自己用代码来释放。
bind完了之后,二进制数据就进入了你的“sql语句”里了。你现在可以把它保存到数据库里:
int result = sqlite3_step( stat );
通过这个语句,stat 表示的sql语句就被写到了数据库里。
最后,要把 sqlite3_stmt 结构给释放:
sqlite3_finalize( stat ); //把刚才分配的内容析构掉
i.2 读出二进制
下面说读二进制的步骤。
跟前面一样,先声明 sqlite3_stmt * 类型变量:
sqlite3_stmt * stat;
然后,把一个 sql 语句解析到 stat 结构里去:
sqlite3_prepare( db, “select * from Tbl_2”, -1, &stat, 0 );
当 prepare 成功之后(返回值是 SQLITE_OK ),开始查询数据。
int result = sqlite3_step( stat );
这一句的返回值是 SQLITE_ROW 时表示成功(不是 SQLITE_OK )。
你可以循环执行 sqlite3_step 函数,一次 step 查询出一条记录。直到返回值不为 SQLITE_ROW 时表示查询结束。
然后开始获取第一个字段:ID 的值。ID是个整数,用下面这个语句获取它的值:
int id = sqlite3_column_int( stat, 0 ); //第2个参数表示获取第几个字段内容,从0开始计算,因为我的表的ID字段是第一个字段,因此这里我填0
下面开始获取 file_content 的值,因为 file_content 是二进制,因此我需要得到它的指针,还有它的长度:
const void * pFileContent = sqlite3_column_blob( stat, 1 );
int len = sqlite3_column_bytes( stat, 1 );
这样就得到了二进制的值。
把 pFileContent 的内容保存出来之后,不要忘了释放 sqlite3_stmt 结构:
sqlite3_finalize( stat ); //把刚才分配的内容析构掉
i.3 重复使用 sqlite3_stmt 结构
如果你需要重复使用 sqlite3_prepare 解析好的 sqlite3_stmt 结构,需要用函数: sqlite3_reset。
result = sqlite3_reset(stat);
这样, stat 结构又成为 sqlite3_prepare 完成时的状态,你可以重新为它 bind 内容。
(4) 事务处理
sqlite 是支持事务处理的。如果你知道你要同步删除很多数据,不仿把它们做成一个统一的事务。
通常一次 sqlite3_exec 就是一次事务,如果你要删除1万条数据,sqlite就做了1万次:开始新事务->删除一条数据->提交事务->开始新事务->… 的过程。这个操作是很慢的。因为时间都花在了开始事务、提交事务上。
你可以把这些同类操作做成一个事务,这样如果操作错误,还能够回滚事务。
事务的操作没有特别的接口函数,它就是一个普通的 sql 语句而已:
分别如下:
复制代码 代码如下:
int result;
result = sqlite3_exec( db, "begin transaction", 0, 0, &zErrorMsg ); //开始一个事务
result = sqlite3_exec( db, "commit transaction", 0, 0, &zErrorMsg ); //提交事务
result = sqlite3_exec( db, "rollback transaction", 0, 0, &zErrorMsg ); //回滚事务
一、 给数据库加密
前面所说的内容网上已经有很多资料,虽然比较零散,但是花点时间也还是可以找到的。现在要说的这个——数据库加密,资料就很难找。也可能是我操作水平不够,找不到对应资料。但不管这样,我还是通过网上能找到的很有限的资料,探索出了给sqlite数据库加密的完整步骤。
这里要提一下,虽然 sqlite 很好用,速度快、体积小巧。但是它保存的文件却是明文的。若不信可以用 NotePad 打开数据库文件瞧瞧,里面 insert 的内容几乎一览无余。这样赤裸裸的展现自己,可不是我们的初衷。当然,如果你在嵌入式系统、智能手机上使用 sqlite,最好是不加密,因为这些系统运算能力有限,你做为一个新功能提供者,不能把用户有限的运算能力全部花掉。
Sqlite为了速度而诞生。因此Sqlite本身不对数据库加密,要知道,如果你选择标准AES算法加密,那么一定有接近50%的时间消耗在加解密算法上,甚至更多(性能主要取决于你算法编写水平以及你是否能使用cpu提供的底层运算能力,比如MMX或sse系列指令可以大幅度提升运算速度)。
Sqlite免费版本是不提供加密功能的,当然你也可以选择他们的收费版本,那你得支付2000块钱,而且是USD。我这里也不是说支付钱不好,如果只为了数据库加密就去支付2000块,我觉得划不来。因为下面我将要告诉你如何为免费的Sqlite扩展出加密模块——自己动手扩展,这是Sqlite允许,也是它提倡的。
那么,就让我们一起开始为 sqlite3.c 文件扩展出加密模块。
i.1 必要的宏
通过阅读 Sqlite 代码(当然没有全部阅读完,6万多行代码,没有一行是我习惯的风格,我可没那么多眼神去看),我搞清楚了两件事:
Sqlite是支持加密扩展的;
需要 #define 一个宏才能使用加密扩展。
这个宏就是
SQLITE_HAS_CODEC。
你在代码最前面(也可以在 sqlite3.h 文件第一行)定义:
#ifndef SQLITE_HAS_CODEC
#define SQLITE_HAS_CODEC
#endif
如果你在代码里定义了此宏,但是还能够正常编译,那么应该是操作没有成功。因为你应该会被编译器提示有一些函数无法链接才对。如果你用的是 VC 2003,你可以在“解决方案”里右键点击你的工程,然后选“属性”,找到“C/C ”,再找到“命令行”,在里面手工添加“/D "SQLITE_HAS_CODEC"”。
定义了这个宏,一些被 Sqlite 故意屏蔽掉的代码就被使用了。这些代码就是加解密的接口。
尝试编译,vc会提示你有一些函数无法链接,因为找不到他们的实现。
如果你也用的是VC2003,那么会得到下面的提示:
error LNK2019: 无法解析的外部符号 _sqlite3CodecGetKey ,该符号在函数 _attachFunc 中被引用
error LNK2019: 无法解析的外部符号 _sqlite3CodecAttach ,该符号在函数 _attachFunc 中被引用
error LNK2019: 无法解析的外部符号 _sqlite3_activate_see,该符号在函数 _sqlite3Pragma 中被引用
error LNK2019: 无法解析的外部符号 _sqlite3_key ,该符号在函数 _sqlite3Pragma 中被引用
fatal error LNK1120: 4 个无法解析的外部命令
这是正常的,因为Sqlite只留了接口而已,并没有给出实现。
下面就让我来实现这些接口。
i.2 自己实现加解密接口函数
如果真要我从一份 www.sqlite.org 网上down下来的 sqlite3.c 文件,直接摸索出这些接口的实现,我认为我还没有这个能力。
好在网上还有一些代码已经实现了这个功能。通过参照他们的代码以及不断编译中vc给出的错误提示,最终我把整个接口整理出来。
实现这些预留接口不是那么容易,要重头说一次怎么回事很困难。我把代码都写好了,直接把他们按我下面的说明拷贝到 sqlite3.c 文件对应地方即可。我在下面也提供了sqlite3.c 文件,可以直接参考或取下来使用。
这里要说一点的是,我另外新建了两个文件:crypt.c和crypt.h。
其中crypt.h如此定义:
#ifndef DCG_SQLITE_CRYPT_FUNC_
#define DCG_SQLITE_CRYPT_FUNC_
***********/
int My_DeEncrypt_Func( unsigned char * pData, unsigned int data_len, const char * key, unsigned int len_of_key );
#endif
其中的 crypt.c 如此定义:
#include "./crypt.h"
#include "memory.h"
int My_Encrypt_Func( unsigned char * pData, unsigned int data_len, const char * key, unsigned int len_of_key )
{
return 0;
}
int My_DeEncrypt_Func( unsigned char * pData, unsigned int data_len, const char * key, unsigned int len_of_key )
{
return 0;
}
这个文件很容易看,就两函数,一个加密一个解密。传进来的参数分别是待处理的数据、数据长度、密钥、密钥长度。
处理时直接把结果作用于 pData 指针指向的内容。
你需要定义自己的加解密过程,就改动这两个函数,其它部分不用动。扩展起来很简单。
这里有个特点,data_len 一般总是 1024 字节。正因为如此,你可以在你的算法里使用一些特定长度的加密算法,比如AES要求被加密数据一定是128位(16字节)长。这个1024不是碰巧,而是 Sqlite 的页定义是1024字节,在sqlite3.c文件里有定义:
# define SQLITE_DEFAULT_PAGE_SIZE 1024
你可以改动这个值,不过还是建议没有必要不要去改它。
上面写了两个扩展函数,如何把扩展函数跟 Sqlite 挂接起来,这个过程说起来比较麻烦。我直接贴代码。
分3个步骤。
首先,在 sqlite3.c 文件顶部,添加下面内容:
#ifdef SQLITE_HAS_CODEC
#include "./crypt.h"
void sqlite3pager_free_codecarg(void *pArg);
#endif
这个函数之所以要在 sqlite3.c 开头声明,是因为下面在 sqlite3.c 里面某些函数里要插入这个函数调用。所以要提前声明。
其次,在sqlite3.c文件里搜索“sqlite3PagerClose”函数,要找到它的实现代码(而不是声明代码)。
实现代码里一开始是:
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
ThreadData *pTsd = sqlite3ThreadData();
assert( pPager );
assert( pTsd && pTsd->nAlloc );
#endif
需要在这部分后面紧接着插入:
#ifdef SQLITE_HAS_CODEC
sqlite3pager_free_codecarg(pPager->pCodecArg);
#endif
这里要注意,sqlite3PagerClose 函数大概也是 3.3.17版本左右才改名的,以前版本里是叫 “sqlite3pager_close”。因此你在老版本sqlite代码里搜索“sqlite3PagerClose”是搜不到的。
类似的还有“sqlite3pager_get”、“sqlite3pager_unref”、“sqlite3pager_write”、“sqlite3pager_pagecount”等都是老版本函数,它们在 pager.h 文件里定义。新版本对应函数是在 sqlite3.h 里定义(因为都合并到 sqlite3.c和sqlite3.h两文件了)。所以,如果你在使用老版本的sqlite,先看看 pager.h 文件,这些函数不是消失了,也不是新蹦出来的,而是老版本函数改名得到的。
最后,往sqlite3.c 文件下找。找到最后一行:
在这一行后面,接上本文最下面的代码段。
这些代码很长,我不再解释,直接接上去就得了。
唯一要提的是 DeriveKey 函数。这个函数是对密钥的扩展。比如,你要求密钥是128位,即是16字节,但是如果用户只输入 1个字节呢?2个字节呢?或输入50个字节呢?你得对密钥进行扩展,使之符合16字节的要求。
DeriveKey 函数就是做这个扩展的。有人把接收到的密钥求md5,这也是一个办法,因为md5运算结果固定16字节,不论你有多少字符,最后就是16字节。这是md5算法的特点。但是我不想用md5,因为还得为它添加包含一些 md5 的.c或.cpp文件。我不想这么做。我自己写了一个算法来扩展密钥,很简单的算法。当然,你也可以使用你的扩展方法,也而可以使用 md5 算法。只要修改 DeriveKey 函数就可以了。
在 DeriveKey 函数里,只管申请空间构造所需要的密钥,不需要释放,因为在另一个函数里有释放过程,而那个函数会在数据库关闭时被调用。参考我的 DeriveKey 函数来申请内存。
这里我给出我已经修改好的 sqlite3.c 和 sqlite3.h 文件。
如果太懒,就直接使用这两个文件,编译肯定能通过,运行也正常。当然,你必须按我前面提的,新建 crypt.h 和 crypt.c 文件,而且函数要按我前面定义的要求来做。
i.3 加密使用方法:
现在,你代码已经有了加密功能。
你要把加密功能给用上,除了改 sqlite3.c 文件、给你工程添加 SQLITE_HAS_CODEC 宏,还得修改你的数据库调用函数。
前面提到过,要开始一个数据库操作,必须先 sqlite3_open 。
加解密过程就在 sqlite3_open 后面操作。
假设你已经 sqlite3_open 成功了,紧接着写下面的代码:
int i;
//添加、使用密码
i = sqlite3_key( db, "dcg", 3 );
//修改密码
i = sqlite3_rekey( db, "dcg", 0 );
用 sqlite3_key 函数来提交密码。
第1个参数是 sqlite3 * 类型变量,代表着用 sqlite3_open 打开的数据库(或新建数据库)。
第2个参数是密钥。
第3个参数是密钥长度。
用 sqlite3_rekey 来修改密码。参数含义同 sqlite3_key。
实际上,你可以在sqlite3_open函数之后,到 sqlite3_close 函数之前任意位置调用 sqlite3_key 来设置密码。
但是如果你没有设置密码,而数据库之前是有密码的,那么你做任何操作都会得到一个返回值:SQLITE_NOTADB,并且得到错误提示:“file is encrypted or is not a database”。
只有当你用 sqlite3_key 设置了正确的密码,数据库才会正常工作。
如果你要修改密码,前提是你必须先 sqlite3_open 打开数据库成功,然后 sqlite3_key 设置密钥成功,之后才能用 sqlite3_rekey 来修改密码。
如果数据库有密码,但你没有用 sqlite3_key 设置密码,那么当你尝试用 sqlite3_rekey 来修改密码时会得到 SQLITE_NOTADB 返回值。
如果你需要清空密码,可以使用:
//修改密码
i = sqlite3_rekey( db, NULL, 0 );
来完成密码清空功能。
i.4 sqlite3.c 最后添加代码段
复制代码 代码如下:
#ifdef SQLITE_HAS_CODEC
#define CRYPT_OFFSET 8
typedef struct _CryptBlock
{
BYTE* ReadKey; // 读数据库和写入事务的密钥
BYTE* WriteKey; // 写入数据库的密钥
int PageSize; // 页的大小
BYTE* Data;
} CryptBlock, *LPCryptBlock;
#ifndef DB_KEY_LENGTH_BYTE
#define DB_KEY_LENGTH_BYTE 16
#endif
#ifndef DB_KEY_PADDING
#define DB_KEY_PADDING 0x33
#endif
void sqlite3CodecGetKey(sqlite3* db, int nDB, void** Key, int* nKey)
{
return ;
}
int sqlite3CodecAttach(sqlite3 *db, int nDb, const void *pKey, int nKeyLen);
void sqlite3_activate_see(const char* right )
{
return;
}
int sqlite3_key(sqlite3 *db, const void *pKey, int nKey);
int sqlite3_rekey(sqlite3 *db, const void *pKey, int nKey);
// 从用户提供的缓冲区中得到一个加密密钥
// 用户提供的密钥可能位数上满足不了要求,使用这个函数来完成密钥扩展
static unsigned char * DeriveKey(const void *pKey, int nKeyLen);
//创建或更新一个页的加密算法索引.此函数会申请缓冲区.
static LPCryptBlock CreateCryptBlock(unsigned char* hKey, Pager *pager, LPCryptBlock pExisting);
//加密/解密函数, 被pager调用
void * sqlite3Codec(void *pArg, unsigned char *data, Pgno nPageNum, int nMode);
//设置密码函数
int __stdcall sqlite3_key_interop(sqlite3 *db, const void *pKey, int nKeySize);
// 修改密码函数
int __stdcall sqlite3_rekey_interop(sqlite3 *db, const void *pKey, int nKeySize);
//销毁一个加密块及相关的缓冲区,密钥.
static void DestroyCryptBlock(LPCryptBlock pBlock);
static void * sqlite3pager_get_codecarg(Pager *pPager);
void sqlite3pager_set_codec(Pager *pPager,void *(*xCodec)(void*,void*,Pgno,int),void *pCodecArg );
//加密/解密函数, 被pager调用
void * sqlite3Codec(void *pArg, unsigned char *data, Pgno nPageNum, int nMode)
{
LPCryptBlock pBlock = (LPCryptBlock)pArg;
unsigned int dwPageSize = 0;
if (!pBlock) return data;
// 确保pager的页长度和加密块的页长度相等.如果改变,就需要调整.
if (nMode != 2)
{
PgHdr *pageHeader;
pageHeader = DATA_TO_PGHDR(data);
if (pageHeader->pPager->pageSize != pBlock->PageSize)
{
CreateCryptBlock(0, pageHeader->pPager, pBlock);
}
}
switch(nMode)
{
case 0: // Undo a "case 7" journal file encryption
case 2: //重载一个页
case 3: //载入一个页
if (!pBlock->ReadKey) break;
dwPageSize = pBlock->PageSize;
My_DeEncrypt_Func(data, dwPageSize, pBlock->ReadKey, DB_KEY_LENGTH_BYTE );
break;
case 6: //加密一个主数据库文件的页
if (!pBlock->WriteKey) break;
memcpy(pBlock->Data CRYPT_OFFSET, data, pBlock->PageSize);
data = pBlock->Data CRYPT_OFFSET;
dwPageSize = pBlock->PageSize;
My_Encrypt_Func(data , dwPageSize, pBlock->WriteKey, DB_KEY_LENGTH_BYTE );
break;
case 7: //加密事务文件的页
if (!pBlock->ReadKey) break;
memcpy(pBlock->Data CRYPT_OFFSET, data, pBlock->PageSize);
data = pBlock->Data CRYPT_OFFSET;
dwPageSize = pBlock->PageSize;
My_Encrypt_Func( data, dwPageSize, pBlock->ReadKey, DB_KEY_LENGTH_BYTE );
break;
}
return data;
}
//
销毁一个加密块及相关的缓冲区,密钥.
static void DestroyCryptBlock(LPCryptBlock pBlock)
{
//销毁读密钥.
if (pBlock->ReadKey){
sqliteFree(pBlock->ReadKey);
}
//如果写密钥存在并且不等于读密钥,也销毁.
if (pBlock->WriteKey && pBlock->WriteKey != pBlock->ReadKey){
sqliteFree(pBlock->WriteKey);
}
if(pBlock->Data){
sqliteFree(pBlock->Data);
}
//释放加密块.
sqliteFree(pBlock);
}
static void * sqlite3pager_get_codecarg(Pager *pPager)
{
return (pPager->xCodec) ? pPager->pCodecArg: NULL;
}
// 从用户提供的缓冲区中得到一个加密密钥
static unsigned char * DeriveKey(const void *pKey, int nKeyLen)
{
unsigned char * hKey = NULL;
int j;
if( pKey == NULL || nKeyLen == 0 )
{
return NULL;
}
hKey = sqliteMalloc( DB_KEY_LENGTH_BYTE 1 );
if( hKey == NULL )
{
return NULL;
}
hKey[ DB_KEY_LENGTH_BYTE ] = 0;
if( nKeyLen < DB_KEY_LENGTH_BYTE )
{
memcpy( hKey, pKey, nKeyLen ); //先拷贝得到密钥前面的部分
j = DB_KEY_LENGTH_BYTE - nKeyLen;
//补充密钥后面的部分
memset( hKey nKeyLen, DB_KEY_PADDING, j );
}
else
{ //密钥位数已经足够,直接把密钥取过来
memcpy( hKey, pKey, DB_KEY_LENGTH_BYTE );
}
return hKey;
}
//创建或更新一个页的加密算法索引.此函数会申请缓冲区.
static LPCryptBlock CreateCryptBlock(unsigned char* hKey, Pager *pager, LPCryptBlock pExisting)
{
LPCryptBlock pBlock;
if (!pExisting) //创建新加密块
{
pBlock = sqliteMalloc(sizeof(CryptBlock));
memset(pBlock, 0, sizeof(CryptBlock));
pBlock->ReadKey = hKey;
pBlock->WriteKey = hKey;
pBlock->PageSize = pager->pageSize;
pBlock->Data = (unsigned char*)sqliteMalloc(pBlock->PageSize CRYPT_OFFSET);
}
else //更新存在的加密块
{
pBlock = pExisting;
if ( pBlock->PageSize != pager->pageSize && !pBlock->Data){
sqliteFree(pBlock->Data);
pBlock->PageSize = pager->pageSize;
pBlock->Data = (unsigned char*)sqliteMalloc(pBlock->PageSize CRYPT_OFFSET);
}
}
memset(pBlock->Data, 0, pBlock->PageSize CRYPT_OFFSET);
return pBlock;
}
void sqlite3pager_set_codec(
Pager *pPager,
void *(*xCodec)(void*,void*,Pgno,int),
void *pCodecArg
)
{
pPager->xCodec = xCodec;
pPager->pCodecArg = pCodecArg;
}
int sqlite3_key(sqlite3 *db, const void *pKey, int nKey)
{
return sqlite3_key_interop(db, pKey, nKey);
}
int sqlite3_rekey(sqlite3 *db, const void *pKey, int nKey)
{
return sqlite3_rekey_interop(db, pKey, nKey);
}
int sqlite3CodecAttach(sqlite3 *db, int nDb, const void *pKey, int nKeyLen)
{
int rc = SQLITE_ERROR;
unsigned char* hKey = 0;
//如果没有指定密匙,可能标识用了主数据库的加密或没加密.
if (!pKey || !nKeyLen)
{
if (!nDb)
{
return SQLITE_OK; //主数据库, 没有指定密钥所以没有加密.
}
else //附加数据库,使用主数据库的密钥.
{
//获取主数据库的加密块并复制密钥给附加数据库使用
LPCryptBlock pBlock = (LPCryptBlock)sqlite3pager_get_codecarg(sqlite3BtreePager(db->aDb[0].pBt));
if (!pBlock) return SQLITE_OK; //主数据库没有加密
if (!pBlock->ReadKey) return SQLITE_OK; //没有加密
memcpy(pBlock->ReadKey, &hKey, 16);
}
}
else //用户提供了密码,从中创建密钥.
{
hKey = DeriveKey(pKey, nKeyLen);
}
//创建一个新的加密块,并将解码器指向新的附加数据库.
if (hKey)
{
LPCryptBlock pBlock = CreateCryptBlock(hKey, sqlite3BtreePager(db->aDb[nDb].pBt), NULL);
sqlite3pager_set_codec(sqlite3BtreePager(db->aDb[nDb].pBt), sqlite3Codec, pBlock);
rc = SQLITE_OK;
}
return rc;
}
// Changes the encryption key for an existing database.
int __stdcall sqlite3_rekey_interop(sqlite3 *db, const void *pKey, int nKeySize)
{
Btree *pbt = db->aDb[0].pBt;
Pager *p = sqlite3BtreePager(pbt);
LPCryptBlock pBlock = (LPCryptBlock)sqlite3pager_get_codecarg(p);
unsigned char * hKey = DeriveKey(pKey, nKeySize);
int rc = SQLITE_ERROR;
if (!pBlock && !hKey) return SQLITE_OK;
//重新加密一个数据库,改变pager的写密钥, 读密钥依旧保留.
if (!pBlock) //加密一个未加密的数据库
{
pBlock = CreateCryptBlock(hKey, p, NULL);
pBlock->ReadKey = 0; // 原始数据库未加密
sqlite3pager_set_codec(sqlite3BtreePager(pbt), sqlite3Codec, pBlock);
}
else // 改变已加密数据库的写密钥
{
pBlock->WriteKey = hKey;
}
// 开始一个事务
rc = sqlite3BtreeBeginTrans(pbt, 1);
if (!rc)
{
// 用新密钥重写所有的页到数据库。
Pgno nPage = sqlite3PagerPagecount(p);
Pgno nSkip = PAGER_MJ_PGNO(p);
void *pPage;
Pgno n;
for(n = 1; rc == SQLITE_OK && n <= nPage; n )
{
if (n == nSkip) continue;
rc = sqlite3PagerGet(p, n, &pPage);
if(!rc)
{
rc = sqlite3PagerWrite(pPage);
sqlite3PagerUnref(pPage);
}
}
}
// 如果成功,提交事务。
if (!rc)
{
rc = sqlite3BtreeCommit(pbt);
}
// 如果失败,回滚。
if (rc)
{
sqlite3BtreeRollback(pbt);
}
// 如果成功,销毁先前的读密钥。并使读密钥等于当前的写密钥。
if (!rc)
{
if (pBlock->ReadKey)
{
sqliteFree(pBlock->ReadKey);
}
pBlock->ReadKey = pBlock->WriteKey;
}
else// 如果失败,销毁当前的写密钥,并恢复为当前的读密钥。
{
if (pBlock->WriteKey)
{
sqliteFree(pBlock->WriteKey);
}
pBlock->WriteKey = pBlock->ReadKey;
}
// 如果读密钥和写密钥皆为空,就不需要再对页进行编解码。
// 销毁加密块并移除页的编解码器
if (!pBlock->ReadKey && !pBlock->WriteKey)
{
sqlite3pager_set_codec(p, NULL, NULL);
DestroyCryptBlock(pBlock);
}
return rc;
}
int __stdcall sqlite3_key_interop(sqlite3 *db, const void *pKey, int nKeySize)
{
return sqlite3CodecAttach(db, 0, pKey, nKeySize);
}
// 释放与一个页相关的加密块
void sqlite3pager_free_codecarg(void *pArg)
{
if (pArg)
DestroyCryptBlock((LPCryptBlock)pArg);
}
#endif //#ifdef SQLITE_HAS_CODEC
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]