最近搞Canvas绘图,知道了JavaScript中提供了atan2(y,x)这样一个三角函数。乍眼一看,不认识,毕竟在高中时,学过的三角函数有:sin,cos,arcsin,arccos,tan,arctan等,并没有这个。而工作中又需要用到它,所以这里就做了个简单的了解。
在坐标系中理解tan 和 atan
回顾一下三角函数tan:
tanθ,用三角函数来表示时,它的值等于sinθ/cosθ,如果将其放到坐标系中,它的的值等价于:dy/dx。在坐标系中,任意两个点所组成的直线,相对于x轴的斜率就是tanθ = dy /dx,相对于y轴的斜率就是dx/dy ,此时我们用cot来表示;其中,dy 是两个点的y坐标的差值,dx是两个点的x坐标的差值。
那么坐标系内除了y轴,任何一个点(x,y),相对于x轴的斜率就是y-0/x-0,也即是y/x。
我们将tanθ称为一条直线相对于x轴的斜率,那么θ就是相对于x轴的夹角(旋转角度)了。
tan,是根据角度计算斜率的。那么反过来 arctan(反正切)自然就认为是根据斜率来计算角度的。
为何存在atan2 "Apple-converted-space"> 一个是atan2。 atan就是我们所熟知arctan。其实在很多编程语言中都提供了atan2。
那么atan2又是怎么回事呢?
要知道这个,需要知道arctan的不足之处:
arctan的返回值范围是(-π/2, π/2) 不包括, ±π/2,也就是(两个点组成的直线与x轴夹角是90°)90°是计算不出来的。为啥呢"Apple-converted-space"> ,0 是不能作为除数的,所以就无法计算这种情形。
值的范围也就是计算的角度的范围在(-π/2, π/2),从坐标系来看,这个角度的范围只能是在第1、4象限,并不能表示出第2、3象限的角。
为了弥补atan的不足,在计算机编程领域,引入了atan2函数,它的计算结果是在(-π,π]。它正好可以覆盖整个坐标系,包括90°的情形。
它的计算过程是怎样的呢?
关于这个,我从wikipedia上摘取了它的计算过程:
atan2的应用
在第一小节中的那张图中的坐标系,是我们熟知的。在HTML、Canvas中,坐标系并不像我们熟知的坐标系那样。它是这样的:
从x轴正向沿顺时针方向,所经过的角度分别是0,π/2, π,3π/2,2π。
从x轴正向沿逆时针方向,所经过的角度分别是0,-π/2, -π,-3π/2,-2π。
atan2的结果在(-π,π]之间,恰好一周,四个象限全覆盖。从坐标系来看,顺时针方向的值是正值,逆时针方向的值是负的。
从坐标系上来看,atan2结果是(0,-π)时就表示,从x轴正向逆时针方向转最大 π弧度(180角度)。同理,(0,π)表示从x轴正向顺时针转最大π弧度(180角度)。
在第1)小节中说了atan可以用来计算平面坐标系内任意两点的连线与x轴正向之间的夹角。而atan2是atan的补充,那么使用atan2自然就可以来计算平面坐标系内任意两点的连线与x轴正向之间的夹角了。
如果两个点在第一象限内:
如果两个点在第四象限内:
如果两个点在不同的象限内,我们也可以平移来看。
何时需要使用atan2 "color: #ff00ff">这两个需求的共同特点是:
1)两个已知的点
2)根据这两个点和其他的条件去计算一些必须的(画line,arc等必须的)点坐标。
目前我遇到了这两种需求,都通过atan2来解决的。其他的情况,目前尚且未知,待后续发现时,补充上。
以上这篇JavaScript使用atan2来绘制箭头和曲线的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]